Schedule of Accreditation Organisation Name Trading As INAB Reg No Contact Name Address Contact Phone No Email Website Accreditation Standard Standard Version Date of award of accreditation Scope Classification Scope Classification Services available to the public¹ Euro Environmental Management Ltd. Fitz Scientific 389T Damien O'Reilly Unit 35 Boyne Business Park, Drogheda, Louth, A92 D52D 041984540 doreilly@fitzsci.ie https://www.fitzsci.ie EN ISO/IEC 17025 T 2017 01/06/2021 Biological and veterinary testing Chemical testing Yes ¹ Refer to document on interpreting INAB Scopes of Accreditation | | Sites from which accredited services are delivered | | | | | | |---|--|---|--|--|--|--| | | (the detail of the accredited services delivered at each site are on the Scope of Accreditation) | | | | | | | | Name Address | | | | | | | 1 | Sinead Powderly | Unit 35a, , Boyne Business Park, Drogheda, Louth, Ireland, A92 D52D | | | | | | 2 | Head Office | Unit 35 Boyne Business Park, Drogheda, Louth | | | | | | 3 | Fitz Scientific | Unit 1, Boyne Business Park, Drogheda, Louth, Ireland, A92 Y397 | | | | | # Scope of Accreditation ### **Fitz Scientific** ### **Biological and Veterinary Testing** Category: A | Biology/veterinary field -
Tests | Test name | Technique | Matrix | Equipment | Std. reference | |--|---|--|--|--------------------------|--| | 803 Culture of organisms in liquid or agar based culture media with visual or instrument monitoring for growth01 Culture of bacteria | Clostridium perfringens (and spores), presumptive | Isolation and enumeration by membrane filtration | Potable waters, well waters, bottled mineral waters | Membrane filtration unit | Based on Environment
Agency -The Microbiology
of Drinking Water (2021) -
Part 6 method B using
SOP 161 | | | Detection and confirmation of Salmonella species | | Cereals and bakery products, Cocoa and cocoa preparations, Coffee and tea, Confectionery, Dairy products, Egg products, Fats and oils, Fish, shellfish and molluscs, Foods, stockfoods and their additives, Fruit and vegetables, Soups, Herbs and spices, Ices and desserts, Meat and meat products, game, poultry, Nuts and nut products, snacks, Pet foods, Prepared dishes, Soup, broths and sauces, | Solus Elisa (Optima) | Solus ELISA (Optima) using XLD\BSA and SOP 455 | | | | Surfaces, Animal feeds,
Product contact surfaces. | | | |--|---|---|--------------------------|--| | Detection, confirmation and identification of Listeria species | Selective pre-enrichment followed by selective enrichment in broth and plating on selective agar. Confirmation of any presumptive Listeria spp. is by biochemical testing - Microbact | Cereals and bakery products, Cocoa and cocoa preparations, Coffee and tea, Confectionery, Dairy products, Egg products, Fish, shellfish and molluscs, Foods, stockfoods and their additives, Fruit and vegetables, Soups, Herbs and spices, Ices and desserts, Meat and meat products, game, poultry, Nuts and nut products, snacks, Pet foods, Prepared dishes, Soup, broths and sauces, Surfaces, Animal feeds, Product contact surfaces. | Solus Elisa | Solus ELISA using SOP 456 | | Enterococci | Isolation and enumeration by membrane filtration with confirmation by biochemical test | Potable waters, well waters, bottled mineral waters | Membrane filtration unit | Based on UK Environment
Agency - The Microbiology
of Drinking Water (2012) -
Part 5 using SOP 153 | | Enumeration of Bacillus cereus (presumptive) | Isolation and enumeration by spread plate method | Cereals and bakery products, Cocoa and cocoa preparations, Dairy products, Egg products, Foods, stockfoods and their additives, Soups, Ices and desserts, Meat and meat products, game, poultry, Nuts and nut products, snacks, Prepared dishes, Soup, broths and sauces, Surfaces, Product contact surfaces. | Spread plate | Based on BS EN ISO
7932:2004 using spread
plate using SOP 478 | | Enumeration of coagulase positive staphylococci (Staphylococcus aureus and other species) | Isolation and enumeration
by spread plate method
and confirmation by
Coagulase Test | Cereals and bakery products, Cocoa and cocoa preparations, Coffee and tea, Confectionery, Dairy products, Egg products, Fish, shellfish and molluscs, Foods, stockfoods and their additives, Fruit and vegetables, Soups, Herbs and spices, Ices and desserts, Meat and meat products, game, poultry, Nuts and nut products, snacks, Pet foods, Prepared dishes, Soup, broths and sauces, Surfaces, Animal feeds, Product contact surfaces. | Spread plate | Based on BS EN ISO
6888-1:1999 using spread
plate using SOP 465 | |---|--|---|--------------|---| | Enumeration of coliform organisms (presumptive) | Isolation and enumeration by pour plate method | Dairy products, Cereals and bakery products, Cocoa and cocoa preparations, Coffee and tea, Confectionery, Dairy products, Egg products, Fish, shellfish and molluscs, Foods, stockfoods and their additives, Fruit and vegetables, Soups, Herbs and spices, Ices and desserts, Meat and meat products, game, poultry, Nuts and nut products, snacks, Pet foods, Prepared dishes, Soup, broths and sauces, Surfaces, Animal feeds, Product contact surfaces. | Pour plate | Based on BS EN ISO
4832:2006 using pour
plate using SOP 451 | | Enumeration of
Enterobacteriaceae
(presumptive) | | Cereals and bakery products, Cocoa and cocoa preparations, | Pour plate | Based on BS EN ISO
21528-2:2017 using pour
plate using SOP 454 | | | | | Coffee and tea, Confectionery, Dairy products, Egg products, Fish, shellfish and molluscs, Foods, stockfoods and their additives, Fruit and vegetables, Soups, Herbs and spices, Ices and desserts, Meat and meat products, game, poultry, Nuts and nut products, snacks, Pet foods, Prepared dishes, Soup, broths and sauces, Surfaces, Animal feeds, Product contact surfaces. | | | |------|--|--|---|--------------|--| | | imeration of Listeria
cies | Isolation and enumeration by spread plate method and confirmation by biochemical testing - Microbact | Cereals and bakery products, Cocoa and cocoa preparations, Coffee and tea, Confectionery, Dairy products, Egg products, Fish, shellfish and molluscs, Foods, stockfoods and their additives, Fruit and vegetables, Soups, Herbs and spices, Ices and desserts, Meat and meat products, game, poultry, Nuts and nut products, snacks, Pet foods, Prepared dishes, Soup, broths and sauces, Surfaces, Animal feeds, Product contact surfaces. | Spread plate | Based on BS EN ISO
11290-2:
2017 with resuscitation
stage using spread plate
using SOP 480 | | micı | imeration of
roorganisms – aerobic
ony count at 30°C | Isolation and enumeration by pour plate method | Cereals and bakery products, Cocoa and cocoa preparations, Coffee and tea, Confectionery, Dairy products, Egg products, | Pour plate | Based on BS EN ISO
4833-1:2013 using single
pour plate using SOP 457 | | |
| ı | | <u> </u> | |---|--|---|--------------|--| | | | Fats and oils, Fish, shellfish and molluscs, Foods, stockfoods and their additives, Fruit and vegetables, Soups, Herbs and spices, Ices and desserts, Meat and meat products, game, poultry, Nuts and nut products, snacks, Pet foods, Prepared dishes, Soup, broths and sauces, Surfaces, Animal feeds, Product contact surfaces. | | | | Enumeration of
Pseudomonas
spp.(presumptive) | Isolation and enumeration by spread plate method | Cereals and bakery products, Cocoa and cocoa preparations, Dairy products, Egg products, Meat and meat products, game and poultry, Foods, stockfoods and their additives, Soups, Ices and desserts, Meat and meat products, game, poultry, Nuts and nut products, snacks, Prepared dishes, Soup, broths and sauces, Surfaces, Product contact surfaces. | Spread plate | Based on BS EN ISO
13720:2010 using spread
plate using SOP 496 | | Enumeration of yeasts and moulds in products with water activity > 0.95 | | Cereals and bakery products, Confectionery, Dairy products, Egg products, Fats and oils, Fish, shellfish and molluscs, Foods, stockfoods and their additives, Fruit and vegetables, Soups, Ices and desserts, Meat and meat products, game, poultry, Pet foods, | Spread plate | Based on BS ISO 21527-
1:2008 using spread plate
using SOP 466 | | | | Prepared dishes, Soup,
broths and sauces,
Surfaces, Animal feeds,
Product contact surfaces. | | | |---|--|---|--|---| | Enumeration of yeasts and moulds in products with water activity ≤ 0.95 | | Cereals and bakery products, Cocoa and cocoa preparations, Coffee and tea, Confectionery, Dairy products, Egg products, Spices, Nuts and nut products, snacks | Spread plate | Based on BS ISO 21527-
2:2008 using spread plate
using SOP 479 | | Enumeration of β-glucuronidase positive E. coli | Isolation and enumeration by pour plate method | Cereals and bakery products, Cocoa and cocoa preparations, Coffee and tea, Confectionery, Dairy products, Egg products, Fish, shellfish and molluscs, Foods, stockfoods and their additives, Fruit and vegetables, Soups, Herbs and spices, Ices and desserts, Meat and meat products, game, poultry, Nuts and nut products, snacks, Pet foods, Prepared dishes, Soup, broths and sauces, Surfaces, Animal feeds, Product contact surfaces. | Pour plate | Based on BS EN ISO
16649-2:2001 using pour
plate using SOP 453 | | Listeria spp. | Isolation by real time PCR using culture and enrichment with confirmation by biochemical testing | | Applied Biosystems™
QuantStudio™ 5 Real-
Time PCR Instrument,
SureTect™ Listeria
species PCR Assay,
Stick Swab /
Neutralising Buffer | Listeria species PCR Assay, Incubator, autoclave, thermal cycler, balance, PCR Assay workflow certified by AFNOR UNI 03/09-11/13 with in-house method for isolation and confirmation, AOAC 071304 using SOP 592 | | Value of the second sec | | | | | | |--|--|---|--|---|--| | | • | Isolation and enumeration by membrane filtration | | unit | Based on UK Environment
Agency - The Microbiology
of Drinking Water (2015) -
Part 8 using SOP 446 | | | Isolation by real time PCR and confirmation by biochemical testing | frankfurters, raw chicken,
environmental swabs | Salmonella species
PCR Assay, Incubator,
autoclave, thermal
cycler, balance | Alternative method - Thermo Scientific SureTectTM Salmonella species PCR Assay workflow certified by AFNOR UNI 03/07-11/13, AOAC 051303 using SOP 559 and using MKTTn/RVS + XLD/BSA for raw meat (10 g) | | | | Isolation and enumeration by spread plate method | Potable waters, well waters, bottled mineral waters | | Based on UK Environment
Agency - The Microbiology
of Drinking Water (2020) -
Part 7 using SOP 493 | | | | Isolation and enumeration by membrane filtration with confirmation by biochemical test | • | unit | Based on UK Environment
Agency - The Microbiology
of Drinking Water (2016) -
Part 4, with confirmation by
TNA using SOP 157 | | ## **Fitz Scientific** # **Chemical Testing** ### Category: A | Chemistry Field - Tests | Test name | Analyte | Range of measurement | Matrix | Equipment/technique | Standard reference/SOP | |--|---------------------------------------|--------------|----------------------|--
--|--| | 751 Food testing02
Nutritional analysis | Determination of Ash | Ash | 0.81 - 8.19% | Petfood, Cereals, Nutritional Supplements & Powdered Infant Baby Powder, Vegetables & Fruit, Confectionery, Fish, Meat, Dairy Products, Nuts and Nut Products, General Foods, Bread and Bakery Products, Soups and Sauces, Prepared Foods - Ready to Eat Meals | , and the second | SOP 490 Mortensen &
Wallin: J. Assoc. Off.
Anal. Chem Vol 72,
No 3 1989 | | | Determination of Carbohydrate in Food | Carbohydrate | 0.01 - 100.00% | Petfood, Powdered Milk, Cereals, Nutritional Supplements and Infant Baby Powder, Vegetables, Confectionery, Fish, Meat, Dairy Products, Bread and Bakery Products, General Foods, Fruit, Soups and Sauces, Nuts and Nut Products, | By Calculation | SOP 488 FAO 1998 | | | | | Prepared Foods -
Ready to Eat
Meals, Milk | | | |--|-------------------------------|-------------------|---|----------------|---| | Determination of Energy in Food - By Calculation | Energy | 0.01 - 100.00% | Petfood, Powdered Milk, Cereals, Nutritional Supplements and Infant Baby Powder, Vegetables, Confectionery, Fish, Meat, Dairy Products, Bread and Bakery Products, General Foods, Fruit, Soups and Sauces, Nuts and Nut Products, Prepared Foods - Ready to Eat Meals, Milk | By Calculation | SOP 488 Carbohydrate Values in Food SOP 573 Reg EU 1169/2011 of European Parliament and Council of 25 October 2011. | | Determination of Fatty
Acid Methyl Esters | Methyl Arachidiate
(C20:0) | 0.35 to 100g/100g | Soups & Sauces,
Pet food, Fruit &
Veg, Cereal Dairy,
Confectionary,
Prepared Dishes,
Infant Formula,
Fish, Meat, Nuts &
Nut Products | GC-FID | AOAC Method
2012.13 using
CEM Rapid FAME's
Analysis Method by
SOP 564 | | | Methyl Behenate
(C22:0) | 0.35 to 100g/100g | Soups & Sauces,
Pet food, Fruit &
Veg, Cereal Dairy,
Confectionary,
Prepared Dishes,
Infant Formula,
Fish, Meat, Nuts &
Nut Products | GC-FID | AOAC Method
2012.13 using
CEM Rapid FAME's
Analysis Method by
SOP 564 | | | Methyl Butyrate (C4:0) | 0.35 to 100g/100g | Soups & Sauces,
Pet food, Fruit &
Veg, Cereal Dairy,
Confectionary, | GC-FID | AOAC Method
2012.13 using
CEM Rapid FAME's | | | | Prepared Dishes,
Infant Formula,
Fish, Meat, Nuts &
Nut Products | | Analysis Method by
SOP 564 | |--|-------------------|---|--------|---| | Methyl cis-10
heptadecenoate
(C17:1) | 0.35 to 100g/100g | Soups & Sauces,
Pet food, Fruit &
Veg, Cereal Dairy,
Confectionary,
Prepared Dishes,
Infant Formula,
Fish, Meat, Nuts &
Nut Products | GC-FID | AOAC Method
2012.13 using
CEM Rapid FAME's
Analysis Method by
SOP 564 | | Methyl cis-10-
pentadecanoate
(C15:1) | 0.35 to 100g/100g | Soups & Sauces,
Pet food, Fruit &
Veg, Cereal Dairy,
Confectionary,
Prepared Dishes,
Infant Formula,
Fish, Meat, Nuts &
Nut Products | GC-FID | AOAC Method
2012.13 using
CEM Rapid FAME's
Analysis Method by
SOP 564 | | Methyl cis-11,14,17-
eicosatrienoate
(C20:3) | 0.35 to 100g/100g | Soups & Sauces,
Pet food, Fruit &
Veg, Cereal Dairy,
Confectionary,
Prepared Dishes,
Infant Formula,
Fish, Meat, Nuts &
Nut Products | GC-FID | AOAC Method
2012.13 using
CEM Rapid FAME's
Analysis Method by
SOP 564 | | Methyl cis-11,14-
eicosadienoate
(C20:2) | 0.35 to 100g/100g | Soups & Sauces,
Pet food, Fruit &
Veg, Cereal Dairy,
Confectionary,
Prepared Dishes,
Infant Formula,
Fish, Meat, Nuts &
Nut Products | GC-FID | AOAC Method
2012.13 using
CEM Rapid FAME's
Analysis Method by
SOP 564 | | Methyl cis-11-
eicosanoate (C20:1) | 0.35 to 100g/100g | Soups & Sauces,
Pet food, Fruit &
Veg, Cereal Dairy,
Confectionary,
Prepared Dishes,
Infant Formula, | GC-FID | AOAC Method
2012.13 using
CEM Rapid FAME's
Analysis Method by
SOP 564 | | | | Fish, Meat, Nuts &
Nut Products | | | |---|-------------------|---|--------|---| | Methyl cis-13,16-
docosadienoate
(C22:2) | 0.35 to 100g/100g | Soups & Sauces,
Pet food, Fruit &
Veg, Cereal Dairy,
Confectionary,
Prepared Dishes,
Infant Formula,
Fish, Meat, Nuts &
Nut Products | GC-FID | AOAC Method
2012.13 using
CEM Rapid FAME's
Analysis Method by
SOP 564 | | Methyl cis-5,8,11,14-
eicosatetraonoate
(C20:4) | 0.35 to 100g/100g | Soups & Sauces,
Pet food, Fruit &
Veg, Cereal Dairy,
Confectionary,
Prepared Dishes,
Infant Formula,
Fish, Meat, Nuts &
Nut Products | GC-FID | AOAC Method
2012.13 using
CEM Rapid FAME's
Analysis Method by
SOP 564 | | Methyl cis-8,11,14-
eicosatrienoate
(C20:3) | 0.35 to 100g/100g | Soups & Sauces,
Pet food, Fruit &
Veg, Cereal Dairy,
Confectionary,
Prepared Dishes,
Infant Formula,
Fish, Meat, Nuts &
Nut Products | GC-FID | AOAC Method
2012.13 using
CEM Rapid FAME's
Analysis Method by
SOP 564 | | Methyl cis-9-oleate
(C18:1) | 0.35 to 100g/100g | Soups & Sauces,
Pet food, Fruit &
Veg, Cereal Dairy,
Confectionary,
Prepared Dishes,
Infant Formula,
Fish, Meat, Nuts &
Nut Products | GC-FID | AOAC Method
2012.13 using
CEM Rapid FAME's
Analysis Method by
SOP 564 | | Methyl Decanoate
(C10:0) | 0.35 to 100g/100g | Soups & Sauces,
Pet food, Fruit &
Veg, Cereal Dairy,
Confectionary,
Prepared Dishes,
Infant Formula,
Fish, Meat, Nuts &
Nut Products | GC-FID | AOAC Method
2012.13 using
CEM Rapid FAME's
Analysis Method by
SOP 564 | | Methyl
docosahexaenoate
(C22:6) (DHA) | 0.35 to 100g/100g | Soups & Sauces,
Pet food, Fruit &
Veg, Cereal Dairy,
Confectionary,
Prepared Dishes,
Infant Formula,
Fish, Meat, Nuts &
Nut Products | GC-FID | AOAC Method
2012.13 using
CEM Rapid FAME's
Analysis Method by
SOP 564 | |--|-------------------|---|--------|---| | Methyl
eicosapentaenoate
(C20:5) (EPA) | 0.35 to 100g/100g | Soups & Sauces,
Pet food, Fruit &
Veg, Cereal Dairy,
Confectionary,
Prepared Dishes,
Infant Formula,
Fish, Meat, Nuts &
Nut Products | GC-FID | AOAC Method
2012.13 using
CEM Rapid FAME's
Analysis Method by
SOP 564 | | Methyl Erucate
(C22:1) | 0.35 to 100g/100g | Soups & Sauces,
Pet food, Fruit &
Veg, Cereal Dairy,
Confectionary,
Prepared Dishes,
Infant Formula,
Fish, Meat, Nuts &
Nut Products | GC-FID | AOAC Method
2012.13 using
CEM Rapid FAME's
Analysis Method
by
SOP 564 | | Methyl
heneicosanoate
(C21:0) | 0.35 to 100g/100g | Soups & Sauces,
Pet food, Fruit &
Veg, Cereal Dairy,
Confectionary,
Prepared Dishes,
Infant Formula,
Fish, Meat, Nuts &
Nut Products | GC-FID | AOAC Method
2012.13 using
CEM Rapid FAME's
Analysis Method by
SOP 564 | | Methyl
Heptadecanoate
(C17:0) | 0.35 to 100g/100g | Soups & Sauces,
Pet food, Fruit &
Veg, Cereal Dairy,
Confectionary,
Prepared Dishes,
Infant Formula,
Fish, Meat, Nuts &
Nut Products | GC-FID | AOAC Method
2012.13 using
CEM Rapid FAME's
Analysis Method by
SOP 564 | | Methyl Hexanoate
(C6:0) | 0.35 to 100g/100g | Soups & Sauces,
Pet food, Fruit & | GC-FID | AOAC Method
2012.13 using | | | | Veg, Cereal Dairy,
Confectionary,
Prepared Dishes,
Infant Formula,
Fish, Meat, Nuts &
Nut Products | | CEM Rapid FAME's
Analysis Method by
SOP 564 | |------------------------------------|-------------------|---|--------|---| | Methyl Laurate
(C12:0) | 0.35 to 100g/100g | Soups & Sauces,
Pet food, Fruit &
Veg, Cereal Dairy,
Confectionary,
Prepared Dishes,
Infant Formula,
Fish, Meat, Nuts &
Nut Products | GC-FID | AOAC Method
2012.13 using
CEM Rapid FAME's
Analysis Method by
SOP 564 | | Methyl Lignocerate
(C24:0) | 0.35 to 100g/100g | Soups & Sauces,
Pet food, Fruit &
Veg, Cereal Dairy,
Confectionary,
Prepared Dishes,
Infant Formula,
Fish, Meat, Nuts &
Nut Products | GC-FID | AOAC Method
2012.13 using
CEM Rapid FAME's
Analysis Method by
SOP 564 | | Methyl Linoleate
(C18:2) | 0.35 to 100g/100g | Soups & Sauces,
Pet food, Fruit &
Veg, Cereal Dairy,
Confectionary,
Prepared Dishes,
Infant Formula,
Fish, Meat, Nuts &
Nut Products | GC-FID | AOAC Method
2012.13 using
CEM Rapid FAME's
Analysis Method by
SOP 564 | | Methyl Linolelaidate
(C18:2) | 0.35 to 100g/100g | Soups & Sauces,
Pet food, Fruit &
Veg, Cereal Dairy,
Confectionary,
Prepared Dishes,
Infant Formula,
Fish, Meat, Nuts &
Nut Products | GC-FID | AOAC Method
2012.13 using
CEM Rapid FAME's
Analysis Method by
SOP 564 | | Methyl Linolenate
(C18:3) (ALA) | 0.35 to 100g/100g | Soups & Sauces,
Pet food, Fruit &
Veg, Cereal Dairy,
Confectionary, | GC-FID | AOAC Method
2012.13 using
CEM Rapid FAME's | | | | Prepared Dishes,
Infant Formula,
Fish, Meat, Nuts &
Nut Products | | Analysis Method by
SOP 564 | |--------------------------------|-------------------|---|--------|---| | Methyl Myristate
(C14:0) | 0.35 to 100g/100g | Soups & Sauces,
Pet food, Fruit &
Veg, Cereal Dairy,
Confectionary,
Prepared Dishes,
Infant Formula,
Fish, Meat, Nuts &
Nut Products | GC-FID | AOAC Method
2012.13 using
CEM Rapid FAME's
Analysis Method by
SOP 564 | | Methyl Myristoleate
(C14:1) | 0.35 to 100g/100g | Soups & Sauces, Pet food, Fruit & Veg, Cereal Dairy, Confectionary, Prepared Dishes, Infant Formula, Fish, Meat, Nuts & Nut Products | | AOAC Method
2012.13 using
CEM Rapid FAME's
Analysis Method by
SOP 564 | | Methyl Nervonate
(C24:1) | 0.35 to 100g/100g | Soups & Sauces,
Pet food, Fruit &
Veg, Cereal Dairy,
Confectionary,
Prepared Dishes,
Infant Formula,
Fish, Meat, Nuts &
Nut Products | GC-FID | AOAC Method
2012.13 using
CEM Rapid FAME's
Analysis Method by
SOP 564 | | Methyl Octanoate
(C8:0) | 0.35 to 100g/100g | Soups & Sauces,
Pet food, Fruit &
Veg, Cereal Dairy,
Confectionary,
Prepared Dishes,
Infant Formula,
Fish, Meat, Nuts &
Nut Products | GC-FID | AOAC Method
2012.13 using
CEM Rapid FAME's
Analysis Method by
SOP 564 | | Methyl Palmitate
(C16:0) | 0.35 to 100g/100g | Soups & Sauces,
Pet food, Fruit &
Veg, Cereal Dairy,
Confectionary,
Prepared Dishes,
Infant Formula, | GC-FID | AOAC Method
2012.13 using
CEM Rapid FAME's
Analysis Method by
SOP 564 | | | | Fish, Meat, Nuts & Nut Products | | | |-------------------------------------|-------------------|---|--------|---| | Methyl Palmitoleate
(C16:1) | 0.35 to 100g/100g | Soups & Sauces,
Pet food, Fruit &
Veg, Cereal Dairy,
Confectionary,
Prepared Dishes,
Infant Formula,
Fish, Meat, Nuts &
Nut Products | GC-FID | AOAC Method
2012.13 using
CEM Rapid FAME's
Analysis Method by
SOP 564 | | Methyl
Pentadecanoate
(C15:0) | 0.35 to 100g/100g | | | AOAC Method
2012.13 using
CEM Rapid FAME's
Analysis Method by
SOP 564 | | Methyl Stearate
(C18:0) | 0.35 to 100g/100g | Soups & Sauces,
Pet food, Fruit &
Veg, Cereal Dairy,
Confectionary,
Prepared Dishes,
Infant Formula,
Fish, Meat, Nuts &
Nut Products | GC-FID | AOAC Method
2012.13 using
CEM Rapid FAME's
Analysis Method by
SOP 564 | | Methyl trans-9-
eladiate (C18:1) | 0.35 to 100g/100g | Soups & Sauces,
Pet food, Fruit &
Veg, Cereal Dairy,
Confectionary,
Prepared Dishes,
Infant Formula,
Fish, Meat, Nuts &
Nut Products | GC-FID | AOAC Method
2012.13 using
CEM Rapid FAME's
Analysis Method by
SOP 564 | | Methyl Tricosanoate
(C23:0) | 0.35 to 100g/100g | Soups & Sauces,
Pet food, Fruit &
Veg, Cereal Dairy,
Confectionary,
Prepared Dishes,
Infant Formula,
Fish, Meat, Nuts &
Nut Products | GC-FID | AOAC Method
2012.13 using
CEM Rapid FAME's
Analysis Method by
SOP 564 | | Methyl Tridecanoate
(C13:0) | 0.35 to 100g/100g | Soups & Sauces,
Pet food, Fruit &
Veg, Cereal Dairy,
Confectionary,
Prepared Dishes,
Infant Formula,
Fish, Meat, Nuts &
Nut Products | GC-FID | AOAC Method
2012.13 using
CEM Rapid FAME's
Analysis Method by
SOP 564 | |-------------------------------------|-------------------|---|--------|---| | Methyl Undecanoate
(C11:0) | 0.35 to 100g/100g | Soups & Sauces,
Pet food, Fruit &
Veg, Cereal Dairy,
Confectionary,
Prepared Dishes,
Infant Formula,
Fish, Meat, Nuts &
Nut Products | GC-FID | AOAC Method
2012.13 using
CEM Rapid FAME's
Analysis Method by
SOP 564 | | Methyl-gamma-
linolenate (C18:3) | 0.35 to 100g/100g | Soups & Sauces,
Pet food, Fruit &
Veg, Cereal Dairy,
Confectionary,
Prepared Dishes,
Infant Formula,
Fish, Meat, Nuts &
Nut Products | GC-FID | AOAC Method
2012.13 using
CEM Rapid FAME's
Analysis Method by
SOP 564 | | Mono-unsaturated Fat (Food) | 0.35 to 100g/100g | Soups & Sauces,
Pet food, Fruit &
Veg, Cereal Dairy,
Confectionary,
Prepared Dishes,
Infant Formula,
Fish, Meat, Nuts &
Nut Products | GC-FID | AOAC Method
2012.13 using
CEM Rapid FAME's
Analysis Method by
SOP 564 | | Omega-3 Fatty Acids | 0.35 to 100g/100g | Soups & Sauces,
Pet food, Fruit &
Veg, Cereal Dairy,
Confectionary,
Prepared Dishes,
Infant Formula,
Fish, Meat, Nuts &
Nut Products | GC-FID | AOAC Method
2012.13 using
CEM Rapid FAME's
Analysis Method by
SOP 564 | | Omega-6 Fatty Acids | 0.35 to 100g/100g | Soups & Sauces,
Pet food, Fruit & | GC-FID | AOAC Method
2012.13 using | | | | | Veg, Cereal Dairy,
Confectionary,
Prepared Dishes,
Infant Formula,
Fish, Meat, Nuts &
Nut Products | | CEM Rapid FAME's
Analysis Method by
SOP 564 | |------------------------------|-----------------------------|-------------------|---|----------------|---| | | Omega-9 Fatty Acids | 0.35 to 100g/100g | Soups & Sauces,
Pet food, Fruit &
Veg, Cereal Dairy,
Confectionary,
Prepared Dishes,
Infant Formula,
Fish, Meat, Nuts &
Nut Products | GC-FID | AOAC Method
2012.13 using
CEM Rapid FAME's
Analysis Method by
SOP 564 | | | Poly-unsaturated Fat (Food) | 0.35 to 100g/100g | Soups & Sauces,
Pet food, Fruit &
Veg, Cereal Dairy,
Confectionary,
Prepared Dishes,
Infant Formula,
Fish, Meat, Nuts &
Nut Products | GC-FID | AOAC Method
2012.13 using
CEM Rapid FAME's
Analysis Method by
SOP 564 | | | Saturated Fat (Food) | 0.35 to 100g/100g | Soups & Sauces,
Pet food, Fruit &
Veg, Cereal Dairy,
Confectionary,
Prepared Dishes,
Infant Formula,
Fish, Meat, Nuts &
Nut Products | GC-FID | AOAC Method
2012.13 using
CEM Rapid FAME's
Analysis Method by
SOP 564 | | | Trans Fatty Acids | 0.35 to 100g/100g | Soups & Sauces,
Pet food, Fruit &
Veg, Cereal Dairy,
Confectionary,
Prepared Dishes,
Infant Formula,
Fish, Meat, Nuts &
Nut Products | GC-FID | AOAC Method
2012.13 using
CEM Rapid FAME's
Analysis Method by
SOP 564 | | Determination of
Moisture | Moisture | 1.27 - 86.91% | Petfood, Cereals,
Nutritional
Supplements
&
Powdered Infant | Loss by drying | SOP 489 AOAC
984.25 S. S Nielsen
Compositional
Analysis of Foods | | | | | Baby Powder,
Vegetables & Fruit,
Confectionery,
Fish, Meat, Dairy
Products, Bread
and Bakery
Products, General
Foods, Soups &
Sauces, Prepared
Foods - Ready to
Eat Meals | | | |---------------------------------------|-----------|-------------------|---|----|--| | Determination of Protein | Protein | 0.24 - 49.17% | Petfood, Cereals,
Nutritional
Supplements,
Infant Baby
Powder,,
Vegetables & Fruit,
Confectionery,
Fish, Meat, Dairy
Products, Nuts and
Nut Products,
General Foods,
Soups & Sauces,
Prepared Foods -
Ready to Eat
Meals, Fish Food | | SOP 487 AOAC Vol
82 No 6 1999 | | Determination of Sugars in Foodstuffs | Fructose | 0.09 to 100g/100g | Soups and Sauces, Pet food, Fruit and Veg., Cereals, Non- Alcoholic Beverages, Confectionary, Prepared Dishes, Infant Formula, Lactose Free Infant Formula, Dessert and Ices | IC | High performance
anion exchange
chromatography with
pulsed amperometric
detection method
(HPAEC-PAD) using
SOP 562 | | | Galactose | 0.03 to 100g/100g | Soups and
Sauces, Pet food,
Fruit and Veg.,
Cereals, Non-
Alcoholic | IC | High performance
anion exchange
chromatography with
pulsed amperometric
detection method | | | | Beverages,
Confectionary,
Prepared Dishes,
Infant Formula,
Lactose Free
Infant Formula,
Dessert and Ices | | (HPAEC-PAD) using
SOP 562 | |---------|-------------------|--|----|--| | Glucose | 0.06 to 100g/100g | Soups and Sauces, Pet food, Fruit and Veg., Cereals, Non- Alcoholic Beverages, Confectionary, Prepared Dishes, Infant Formula, Lactose Free Infant Formula, Dessert and Ices | IC | High performance
anion exchange
chromatography with
pulsed amperometric
detection method
(HPAEC-PAD) using
SOP 562 | | Maltose | 0.03 to 100g/100g | Soups and Sauces, Pet food, Fruit and Veg., Cereals, Non- Alcoholic Beverages, Confectionary, Prepared Dishes, Infant Formula, Lactose Free Infant Formula, Dessert and Ices | IC | High performance
anion exchange
chromatography with
pulsed amperometric
detection method
(HPAEC-PAD) using
SOP 562 | | Sucrose | 0.03 to 100g/100g | Soups and Sauces, Pet food, Fruit and Veg., Cereals, Non- Alcoholic Beverages, Confectionary, Prepared Dishes, Infant Formula, Lactose Free Infant Formula, Dessert and Ices | IC | High performance
anion exchange
chromatography with
pulsed amperometric
detection method
(HPAEC-PAD) using
SOP 562 | | | Total Sugars | 0.03 to 100g/100g | Soups and Sauces, Pet food, Fruit and Veg., Cereals, Non- Alcoholic Beverages, Confectionary, Prepared Dishes, Infant Formula, Lactose Free Infant Formula, Dessert and Ices | IC | High performance
anion exchange
chromatography with
pulsed amperometric
detection method
(HPAEC-PAD) using
SOP 562 | |---|---------------|-------------------|---|---|--| | Determination of Total
Dietary Fibre | Dietary Fibre | 0.73 to 41.33% | Soups and
Sauces, Pet food,
Fruit and Veg.,
Cereals, Prepared
Dishes, General
Foods | Fibre Analyser | By SOP 561 using
AnkomTDF Dietary
Fibre Analyzer
Operators Manual.
AOAC 991.43 | | Determination of Total
Fat | Fat | 0.03 - 100.00% | Petfood, Powdered Milk, Cereals, Nutritional Supplements and Infant Baby Powder, Vegetables, Confectionery, Fish, Meat, Dairy Products, Bread and Bakery Products, General Foods, Fruit, Soups & Sauces, Nuts and Nut Products, Prepared Foods - Ready to Eat Meals, milk | Total Fat using
Nuclear Magnetic
Resonance | SOP 486 AOAC
2008.06 | | Determination of Water
Activity | Water | 0.05 - 0.99 aW | Cereals & Bakery
Products, Cocoa &
Cocoa
Preparations,
Coffee, Tea, Dairy
Products, Fish, | Water Activity Meter
(by electrolytic
measurement), Knife
Mill, Oven | Using SOP 570 with
method based on ISO
18787:2017 and SN
0180-1992 | | | | | | Shellfish, Molluscs, Foodstuffs for Special Nutritional Use, Fruit & Vegetables, Ices & Desserts, Meat, Meat Products, Game & Poultry, Nuts & Nut Products, Pet Food, Prepared Dishes, Soups, broths & sauces | | | |---|--|---------|---------------------|---|---|--| | 752 Chemical residue testing02 Elements | Determination of Sugars in Foodstuffs | Lactose | 0.03 to 100g/100g | Soups and Sauces, Pet food, Fruit and Veg., Cereals, Non- Alcoholic Beverages, Confectionary, Prepared Dishes, Infant Formula, Lactose Free Infant Formula, Dessert and Ices | IC | High performance
anion exchange
chromatography with
pulsed amperometric
detection method
(HPAEC-PAD) using
SOP 562 | | 752 Chemical residue testing04 Pesticide residues | Determination of
Aminomethylphosphonic
acid (AMPA) | AMPA | 0.002 to 0.200 ug/L | Groundwater | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Based o ISO 16308:2014 - determination of glyphosate and AMPA using high pressure liquid chromatography and tandem MS detection along with in house development with Manufacturer Application Engineer using SOP 579 | | | | | 0.007 to 0.200 ug/L | Potable Water | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Based o ISO
16308:2014 -
determination of
glyphosate and AMPA
using high pressure
liquid chromatography | | | | | | | | | and tandem MS detection along with in house development with Manufacturer Application Engineer using SOP 579 | |--|--|-----------------------------|--------------------|--|--|--|--| | | | | 0.01 to 0.200 ug/L | | Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Based o ISO 16308:2014 - determination of glyphosate and AMPA using high pressure liquid chromatography and tandem MS detection along with in house development with Manufacturer Application Engineer using SOP 579 | | | | | Determination of Glyphosate | Glyphosate | 0.0017 to 0.200 ug/L | | Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Based on ISO 16308:
2014 - determination
of Glyphosate and
AMPA using high
pressure liquid
chromatography and
tandem MS detection
with the assistance of
Manufacturing
Application Engineer
using SOP 579' | | | | 0.002 to 0.200 ug/L | | Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Based on ISO 16308:
2014 - determination
of Glyphosate and
AMPA using high
pressure liquid
chromatography and
tandem MS detection
with the assistance of
Manufacturing
Application Engineer
using SOP 579' | | | | | | | | 0.01 to 0.200 ug/L | Potable Water | | Based on ISO 16308:
2014 - determination | | | | | | detection (MSD) in
multiple reaction mode
(MRM) | of Glyphosate and AMPA using high pressure liquid chromatography and tandem MS detection with the assistance of Manufacturing Application Engineer using SOP 579' | |---|-----------------------------|------------|---------------------|--
--| | • | Determination of Acrylamide | Acrylamide | 0.0013 to 0.25 ug/L | Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Based on EPA Method
557 Quantification of
Haloacetic acids,
Bromate, and Dalapon
in Drinking Water
Using Ion
Chromatography and
Tandem Mass
Spectrometry Level
Utilizing Online
Sample Preparation
with LC-MS/MS using
SOP 580 | | | | | 0.0025 to 0.25 ug/L | Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Based on EPA Method
557 Quantification of
Haloacetic acids,
Bromate, and Dalapon
in Drinking Water
Using Ion
Chromatography and
Tandem Mass
Spectrometry Level
Utilizing Online
Sample Preparation
with LC-MS/MS using
SOP 580 | | | | | 0.004 to 0.25 ug/L | Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Based on EPA Method
557 Quantification of
Haloacetic acids,
Bromate, and Dalapon
in Drinking Water
Using Ion
Chromatography and
Tandem Mass | | | | | | | Spectrometry Level Utilizing Online Sample Preparation with LC-MS/MS using SOP 580 | |--|-------------------------------------|-------------------------------|--|--|--| | | Determination of
Haloacetic Acid | BromoChloroAcetic
Acid (b) | 0.2 to 80 ug/l | Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Haloacetic acids,
Bromate, and Dalapon | | | | 0.2 to 80 ug/L | Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Based on EPA Method 557 Quantification of Haloacetic acids, Bromate, and Dalapon in Drinking Water Using Ion Chromatography and Tandem Mass Spectrometry Level Utilizing Online Sample Preparation with LC-MS/MS using SOP 580 | | | | | | 0.5 to 80 ug/L | Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Based on EPA Method
557 Quantification of
Haloacetic acids,
Bromate, and Dalapon
in Drinking Water
Using Ion
Chromatography and
Tandem Mass
Spectrometry Level
Utilizing Online
Sample Preparation | | | | | | with LC-MS/MS using
SOP 580 | |---------------------------------|----------------|---------------|---|--| | BromoDiChloroAcetic
Acid (b) | 0.2 to 80 ug/L | Surface Water | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Based on EPA Method
557 Quantification of
Haloacetic acids,
Bromate, and Dalapon
in Drinking Water
Using Ion
Chromatography and
Tandem Mass
Spectrometry Level
Utilizing Online
Sample Preparation
with LC-MS/MS using
SOP 580 | | | 0.5 to 80 ug/L | Potable Water | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Based on EPA Method
557 Quantification of
Haloacetic acids,
Bromate, and Dalapon
in Drinking Water
Using Ion
Chromatography and
Tandem Mass
Spectrometry Level
Utilizing Online
Sample Preparation
with LC-MS/MS using
SOP 580 | | ChloroDiBromoAcetic
Acid (b) | 0.1 to 80 ug/L | Ground Water | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Based on EPA Method
557 Quantification of
Haloacetic acids,
Bromate, and Dalapon
in Drinking Water
Using Ion
Chromatography and
Tandem Mass
Spectrometry Level
Utilizing Online
Sample Preparation
with LC-MS/MS using
SOP 580 | | | 0.2 to 80 ug/L | Surface Water | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Based on EPA Method
557 Quantification of
Haloacetic acids,
Bromate, and Dalapon
in Drinking Water
Using Ion
Chromatography and
Tandem Mass
Spectrometry Level
Utilizing Online
Sample Preparation
with LC-MS/MS using
SOP 580 | |--------------------------|----------------|---------------|---|--| | | 0.5 to 80 ug/L | Potable Water | LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM) | Based on EPA Method
557 Quantification of
Haloacetic acids,
Bromate, and Dalapon
in Drinking Water
Using Ion
Chromatography and
Tandem Mass
Spectrometry Level
Utilizing Online
Sample Preparation
with LC-MS/MS using
SOP 580 | | DiBromoAcetic Acid (a,b) | 0.2 to 80 ug/L | Ground Water | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Based on EPA Method
557 Quantification of
Haloacetic acids,
Bromate, and Dalapon
in Drinking Water
Using Ion
Chromatography and
Tandem Mass
Spectrometry Level
Utilizing Online
Sample Preparation
with LC-MS/MS using
SOP 580 | | | 0.2 to 80 ug/L | Surface Water | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in | Based on EPA Method
557 Quantification of
Haloacetic acids,
Bromate, and Dalapon | | | | | multiple reaction mode
(MRM) | in Drinking Water Using Ion Chromatography and Tandem Mass Spectrometry Level Utilizing Online Sample Preparation with LC-MS/MS using SOP 580 | |------------------------------|------------------|---------------|---|--| | | 0.5 to 80 ug/L | Potable Water | spectrometric
detection (MSD) in | Based on EPA Method
557 Quantification of
Haloacetic acids,
Bromate, and Dalapon
in Drinking Water
Using Ion
Chromatography and
Tandem Mass
Spectrometry Level
Utilizing Online
Sample Preparation
with LC-MS/MS using
SOP 580 | | DiChloroAcetic Acid
(a,b) | 0.1 to 0.80 ug/L | Surface Water | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Based on EPA Method
557 Quantification of
Haloacetic acids,
Bromate, and Dalapon
in Drinking Water
Using Ion
Chromatography and
Tandem Mass
Spectrometry Level
Utilizing Online
Sample Preparation
with LC-MS/MS using
SOP 580 | | | 0.2 to 80 ug/L | Ground Water | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Based on EPA Method
557 Quantification of
Haloacetic acids,
Bromate, and Dalapon
in Drinking Water
Using Ion
Chromatography and
Tandem Mass | | | | | | Spectrometry Level Utilizing Online Sample Preparation with LC-MS/MS using SOP 580 | |-------------------------------|-----------------|---------------|---|--| | | 0.4 to 80 ug/L | Potable Water | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Based on EPA Method
557 Quantification of
Haloacetic acids,
Bromate, and Dalapon
in Drinking Water
Using Ion
Chromatography and
Tandem Mass
Spectrometry Level
Utilizing Online
Sample Preparation
with LC-MS/MS using
SOP 580 | | MonoBromoAcetic
Acid (a,b) | 0.19 to 80 ug/L | Surface Water | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Based on EPA Method
557 Quantification of
Haloacetic acids,
Bromate, and Dalapon
in Drinking Water
Using Ion
Chromatography and
Tandem Mass
Spectrometry Level
Utilizing Online
Sample Preparation
with LC-MS/MS using
SOP 580 | | | 0.2 to 80 ug/L | Ground Water | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Based on EPA Method
557 Quantification
of
Haloacetic acids,
Bromate, and Dalapon
in Drinking Water
Using Ion
Chromatography and
Tandem Mass
Spectrometry Level
Utilizing Online
Sample Preparation | | | | | | with LC-MS/MS using
SOP 580 | |--------------------------------|----------------|---------------|---|--| | | 0.6 to 80 ug/L | Potable Wtaer | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Based on EPA Method
557 Quantification of
Haloacetic acids,
Bromate, and Dalapon
in Drinking Water
Using Ion
Chromatography and
Tandem Mass
Spectrometry Level
Utilizing Online
Sample Preparation
with LC-MS/MS using
SOP 580 | | MonoChloroAcetic
Acid (a,b) | 0.2 to 80 ug/L | Ground Water | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Based on EPA Method
557 Quantification of
Haloacetic acids,
Bromate, and Dalapon
in Drinking Water
Using Ion
Chromatography and
Tandem Mass
Spectrometry Level
Utilizing Online
Sample Preparation
with LC-MS/MS using
SOP 580 | | | 0.2 to 80 ug/L | Surface Water | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Based on EPA Method
557 Quantification of
Haloacetic acids,
Bromate, and Dalapon
in Drinking Water
Using Ion
Chromatography and
Tandem Mass
Spectrometry Level
Utilizing Online
Sample Preparation
with LC-MS/MS using
SOP 580 | | | 0.6 to 80 ug/L | Potable Water | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Based on EPA Method
557 Quantification of
Haloacetic acids,
Bromate, and Dalapon
in Drinking Water
Using Ion
Chromatography and
Tandem Mass
Spectrometry Level
Utilizing Online
Sample Preparation
with LC-MS/MS using
SOP 580 | |--|----------------|---------------|---|--| | Total of 5 Haloacetic
Acids (total of those
marked as 'a') | 0.1 to 80 ug/L | Surface Water | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Based on EPA Method
557 Quantification of
Haloacetic acids,
Bromate, and Dalapon
in Drinking Water
Using Ion
Chromatography and
Tandem Mass
Spectrometry Level
Utilizing Online
Sample Preparation
with LC-MS/MS using
SOP 580 | | | 0.2 ug/L | Ground Water | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Based on EPA Method
557 Quantification of
Haloacetic acids,
Bromate, and Dalapon
in Drinking Water
Using Ion
Chromatography and
Tandem Mass
Spectrometry Level
Utilizing Online
Sample Preparation
with LC-MS/MS using
SOP 580 | | | 0.4 to 80 ug/L | Potable Water | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in | Based on EPA Method
557 Quantification of
Haloacetic acids,
Bromate, and Dalapon | | | | | multiple reaction mode (MRM) | in Drinking Water Using Ion Chromatography and Tandem Mass Spectrometry Level Utilizing Online Sample Preparation with LC-MS/MS using SOP 580 | |--|----------------|---------------|---|--| | Total of 9 Haloacetic
Acids (total of those
marked as 'b') | 0.1 to 80 ug/L | Ground Water | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Based on EPA Method
557 Quantification of
Haloacetic acids,
Bromate, and Dalapon
in Drinking Water
Using Ion
Chromatography and
Tandem Mass
Spectrometry Level
Utilizing Online
Sample Preparation
with LC-MS/MS using
SOP 580 | | | 0.1 to 80 ug/L | Surface Water | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Based on EPA Method
557 Quantification of
Haloacetic acids,
Bromate, and Dalapon
in Drinking Water
Using Ion
Chromatography and
Tandem Mass
Spectrometry Level
Utilizing Online
Sample Preparation
with LC-MS/MS using
SOP 580 | | | 0.4 to 80 ug/L | Potable Water | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Based on EPA Method
557 Quantification of
Haloacetic acids,
Bromate, and Dalapon
in Drinking Water
Using Ion
Chromatography and
Tandem Mass | | | | | | Spectrometry Level Utilizing Online Sample Preparation with LC-MS/MS using SOP 580 | |-------------------------|----------------|---------------|---|--| | TriBromoAcetic Acid (b) | 0.1 to 80 ug/L | Ground Water | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Based on EPA Method
557 Quantification of
Haloacetic acids,
Bromate, and Dalapon
in Drinking Water
Using Ion
Chromatography and
Tandem Mass
Spectrometry Level
Utilizing Online
Sample Preparation
with LC-MS/MS using
SOP 580 | | | 0.2 to 80 ug/L | Surface Water | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Based on EPA Method
557 Quantification of
Haloacetic acids,
Bromate, and Dalapon
in Drinking Water
Using Ion
Chromatography and
Tandem Mass
Spectrometry Level
Utilizing Online
Sample Preparation
with LC-MS/MS using
SOP 580 | | | 0.5 to 80 ug/L | Potable Water | spectrometric detection (MSD) in | Based on EPA Method
557 Quantification of
Haloacetic acids,
Bromate, and Dalapon
in Drinking Water
Using Ion
Chromatography and
Tandem Mass
Spectrometry Level
Utilizing Online
Sample Preparation | | I | | | | | with LC-MS/MS using
SOP 580 | |---|-------------------------------|----------------|---------------|-------------------------------------|--| | | TriChloroAcetic Acid
(a,b) | 0.1 to 80 ug/L | Surface Water | spectrometric
detection (MSD) in | Based on EPA Method
557 Quantification of
Haloacetic acids,
Bromate, and Dalapon
in Drinking Water
Using Ion
Chromatography and
Tandem Mass
Spectrometry Level
Utilizing Online
Sample Preparation
with LC-MS/MS using
SOP 580 | | | | 0.2 to 80 ug/L | Ground Water | spectrometric detection (MSD) in | Based on EPA Method
557 Quantification of
Haloacetic acids,
Bromate, and Dalapon
in Drinking Water
Using Ion
Chromatography and
Tandem Mass
Spectrometry Level
Utilizing Online
Sample Preparation
with LC-MS/MS using
SOP 580 | | | | 0.4 to 80 ug/L | Potable Water | spectrometric
detection (MSD) in | Based on EPA Method
557 Quantification of
Haloacetic acids,
Bromate, and Dalapon
in Drinking Water
Using Ion
Chromatography and
Tandem Mass
Spectrometry Level
Utilizing Online
Sample Preparation
with LC-MS/MS using
SOP 580 | | Determination of TPH's | Aliphatics (>C10-C12) | 7 to 2000 mg/Kg | Soil | Solvent extraction using PAL RTC and analysis by GC-FID Chromatography | Based on USEPA
Method 8015B using
SOP 572 | |------------------------|-----------------------|------------------|---|--|---| | | Aliphatics (>C12-C16) | 11 to 2000 mg/Kg | Demolition and
Construction
Waste | Solvent extraction using PAL RTC and analysis by GC-FID Chromatography | Based on USEPA
Method 8015B using
SOP 572 | | | | 7 to 2000 mg/Kg | Soil | Solvent extraction using PAL RTC and analysis by GC-FID Chromatography | Based on USEPA
Method 8015B using
SOP 572 | | | Aliphatics (>C16-C21) | 11 to 2000 mg/Kg | Demolition and
Construction
Waste | Solvent extraction using PAL RTC and analysis by GC-FID Chromatography | Based on USEPA
Method 8015B using
SOP 572 | | | | 7 to 2000 mg/Kg | Soil | Solvent extraction using PAL RTC and
analysis by GC-FID Chromatography | Based on USEPA
Method 8015B using
SOP 572 | | | Aliphatics (>C21-C35) | 7 to 2000 mg/Kg | Soil | Solvent extraction using PAL RTC and analysis by GC-FID Chromatography | Based on USEPA
Method 8015B using
SOP 572 | | | Aliphatics (>C35-C40) | 11 to 2000 mg/Kg | Demolition and
Construction
Waste | Solvent extraction using PAL RTC and analysis by GC-FID Chromatography | Based on USEPA
Method 8015B using
SOP 572 | | | Aliphatics (>C8-C12) | 7 to 2000 mg/Kg | Soil | Solvent extraction using PAL RTC and analysis by GC-FID Chromatography | Based on USEPA
Method 8015B using
SOP 572 | | | | 11 to 2000 mg/Kg | Demolition and
Construction
Waste | Solvent extraction using PAL RTC and analysis by GC-FID Chromatography | Based on USEPA
Method 8015B using
SOP 572 | | | Aliphatics (C8 - C10) | 7 to 2000 mg/Kg | Soil | Solvent extraction using PAL RTC and analysis by GC-FID Chromatography | Based on USEPA
Method 8015B using
SOP 572 | | Aliphatics (C8-C10) | 11 to 2000 mg/Kg | Demolition and
Construction
Waste | Solvent extraction using PAL RTC and analysis by GC-FID Chromatography | Based on USEPA
Method 8015B using
SOP 572 | |----------------------|------------------|---|--|---| | Aromatics (>C10-C12) | 11 to 2000 mg/Kg | Demolition and
Construction
Waste | Solvent extraction using PAL RTC and analysis by GC-FID Chromatography | Based on USEPA
Method 8015B using
SOP 572 | | | 7 to 2000 mg/Kg | Soil | Solvent extraction using PAL RTC and analysis by GC-FID Chromatography | Based on USEPA
Method 8015B using
SOP 572 | | Aromatics (>C12-C16) | 11 to 2000 mg/Kg | Demolition and
Construction
Waste | Solvent extraction using PAL RTC and analysis by GC-FID Chromatography | Based on USEPA
Method 8015B using
SOP 572 | | | 7 to 2000 mg/Kg | Soil | Solvent extraction using PAL RTC and analysis by GC-FID Chromatography | Based on USEPA
Method 8015B using
SOP 572 | | Aromatics (>C16-C21) | 11 to 2000 mg/Kg | Demolition and
Construction
Waste | Solvent extraction using PAL RTC and analysis by GC-FID Chromatography | Based on USEPA
Method 8015B using
SOP 572 | | | 7 to 2000 mg/Kg | Soil | Solvent extraction using PAL RTC and analysis by GC-FID Chromatography | Based on USEPA
Method 8015B using
SOP 572 | | Aromatics (>C21-C35) | 11 to 2000 mg/Kg | Demolition and
Construction
Waste | Solvent extraction using PAL RTC and analysis by GC-FID Chromatography | Based on USEPA
Method 8015B using
SOP 572 | | | 7 to 2000 mg/Kg | Soil | Solvent extraction using PAL RTC and analysis by GC-FID Chromatography | Based on USEPA
Method 8015B using
SOP 572 | | Aromatics (>C35-C40) | 11 to 2000 mg/Kg | Aromatics (>C21-C35) | Solvent extraction using PAL RTC and analysis by GC-FID Chromatography | Based on USEPA
Method 8015B using
SOP 572 | | | | Aromatics (C8-C10) | 11 to 2000 mg/Kg | Demolition and
Construction
Waste | Solvent extraction
using PAL RTC and
analysis by GC-FID
Chromatography | Based on USEPA
Method 8015B using
SOP 572 | |--|-------------------------------------|---------------------------------|------------------|---|---|--| | | | | 7 to 2000 mg/Kg | Soil | Solvent extraction using PAL RTC and analysis by GC-FID Chromatography | Based on USEPA
Method 8015B using
SOP 572 | | | | C8 - C40 | 7 to 2000 mg/Kg | Soil | Solvent extraction using PAL RTC and analysis by GC-FID Chromatography | Based on USEPA
Method 8015B using
SOP 572 | | | | Total (C8-C40) | 11 to 2000 mg/Kg | Demolition and
Construction
Waste | Solvent extraction using PAL RTC and analysis by GC-FID Chromatography | Based on USEPA
Method 8015B using
SOP 572 | | | | Total Aliphatics (C8 - C40) | 7 to 2000 mg/Kg | Soil | Solvent extraction using PAL RTC and analysis by GC-FID Chromatography | Based on USEPA
Method 8015B using
SOP 572 | | | | Total Aliphatics (C8-C40) | 11 to 2000 mg/Kg | Demolition and
Construction
Waste | Solvent extraction using PAL RTC and analysis by GC-FID Chromatography | Based on USEPA
Method 8015B using
SOP 572 | | | | Total Aromatic (C8 - C40) | 7 to 2000 mg/Kg | Soil | Solvent extraction using PAL RTC and analysis by GC-FID Chromatography | Based on USEPA
Method 8015B using
SOP 572 | | | | Total Aromatics (C8-C40) | 11 to 2000 mg/Kg | Demolition and
Construction
Waste | Solvent extraction using PAL RTC and analysis by GC-FID Chromatography | Based on USEPA
Method 8015B using
SOP 572 | | 766 Environmental testing (inc waters)05 Inorganic | Determination of
Haloacetic Acid | BromoDiChloroAcetic
Acid (b) | 0.2 to 80 ug/L | Ground Water | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Based on EPA Method
557 Quantification of
Haloacetic acids,
Bromate, and Dalapon
in Drinking Water
Using Ion
Chromatography and
Tandem Mass | | The second secon | | | | |--|--|--|--| | | | | Spectrometry Level
Utilizing Online
Sample Preparation
with LC-MS/MS using
SOP 580 | ## **Head Office** ## **Chemical Testing** ## Category: A | Chemistry Field - Tests | Test name | Analyte | Range of measurement | Matrix | Equipment/technique | Standard reference/SOP | |---|---------------|--------------------------------|----------------------|---|---|--| | 752 Chemical residue testing04 Pesticide residues | | Pesticides 0.002 to 0.125 ug/L | Groundwater | Solvent extraction on
triple quad GCMSMS -
GCMS with triple quad
mass spectrometric
detection with
TSQ9000 | EPA Method 8081
along with In house
development with
Manufacturer
Applications Engineer
using SOP 575 | | | | | | 0.002 to 0.125 ug/L | Surface Water | Solvent extraction on
triple quad GCMSMS -
GCMS with triple quad
mass spectrometric
detection with
TSQ9000 | EPA Method 8081
along with In house
development with
Manufacturer
Applications Engineer
using SOP 575 | | | Chloropropham | | 0.006 to 0.125 ug/L | Potable Water | Solvent extraction on
triple quad GCMSMS -
GCMS with triple quad
mass spectrometric
detection with
TSQ9000 | EPA Method 8081
along with In house
development with
Manufacturer
Applications Engineer
using SOP 575 | | | | Chloropropham | 0.001 to 0.125 ug/L | Groundwater | Solvent extraction on
triple quad GCMSMS -
GCMS with triple quad
mass spectrometric
detection with
TSQ9000 | EPA Method 8081
along with In house
development with
Manufacturer
Applications Engineer
using SOP 575 | | | | 0.001 to 0.125 ug/L | Surface Water | Solvent extraction on
triple quad GCMSMS -
GCMS with triple quad
mass spectrometric
detection with
TSQ9000 | EPA Method 8081
along with In house
development with
Manufacturer
Applications Engineer
using
SOP 575 | | | | | | 0.0043 to 0.125 ug/L | Potable Water | Solvent extraction on triple quad GCMSMS - | EPA Method 8081 along with In house | | | | | GCMS with triple quad
mass spectrometric
detection with
TSQ9000 | development with
Manufacturer
Applications Engineer
using SOP 575 | |----------------|---------------------|---------------|---|--| | Chlorothalonil | 0.001 to 0.125 ug/L | Surface Water | Solvent extraction on
triple quad GCMSMS -
GCMS with triple quad
mass spectrometric
detection with
TSQ9000 | EPA Method 8081
along with In house
development with
Manufacturer
Applications Engineer
using SOP 575 | | | 0.002 to 0.125 ug/L | Groundwater | Solvent extraction on
triple quad GCMSMS -
GCMS with triple quad
mass spectrometric
detection with
TSQ9000 | EPA Method 8081
along with In house
development with
Manufacturer
Applications Engineer
using SOP 575 | | | 0.007 to 0.125 ug/L | Potable Water | Solvent extraction on
triple quad GCMSMS -
GCMS with triple quad
mass spectrometric
detection with
TSQ9000 | EPA Method 8081
along with In house
development with
Manufacturer
Applications Engineer
using SOP 575 | | Cypermethrin | 0.001 to 0.125 ug/L | Surface Water | Solvent extraction on
triple quad GCMSMS -
GCMS with triple quad
mass spectrometric
detection with
TSQ9000 | EPA Method 8081
along with In house
development with
Manufacturer
Applications Engineer
using SOP 575 | | | 0.007 to 0.125 ug/L | Potable Water | Solvent extraction on
triple quad GCMSMS -
GCMS with triple quad
mass spectrometric
detection with
TSQ9000 | EPA Method 8081
along with In house
development with
Manufacturer
Applications Engineer
using SOP 575 | | | 0.010 to 0.125 ug/L | Groundwater | Solvent extraction on
triple quad GCMSMS -
GCMS with triple quad
mass spectrometric
detection with
TSQ9000 | EPA Method 8081
along with In house
development with
Manufacturer
Applications Engineer
using SOP 575 | | Dichlobenil | 0.001 to 0.125 ug/L | Groundwater | Solvent extraction on
triple quad GCMSMS -
GCMS with triple quad
mass spectrometric
detection with
TSQ9000 | EPA Method 8081
along with In house
development with
Manufacturer
Applications Engineer
using SOP 575 | |----------------------|---------------------|---------------|---|--| | | 0.001 to 0.125 ug/L | Surface Water | Solvent extraction on
triple quad GCMSMS -
GCMS with triple quad
mass spectrometric
detection with
TSQ9000 | EPA Method 8081
along with In house
development with
Manufacturer
Applications Engineer
using SOP 575 | | | 0.002 to 0.125 ug/L | Potable Water | Solvent extraction on
triple quad GCMSMS -
GCMS with triple quad
mass spectrometric
detection with
TSQ9000 | EPA Method 8081
along with In house
development with
Manufacturer
Applications Engineer
using SOP 575 | | Dieldrin | 0.006 to 0.125 ug/L | Groundwater | Solvent extraction on
triple quad GCMSMS -
GCMS with triple quad
mass spectrometric
detection with
TSQ9000 | EPA Method 8081
along with In house
development with
Manufacturer
Applications Engineer
using SOP 575 | | | 0.006 to 0.125 ug/L | Potable Water | Solvent extraction on
triple quad GCMSMS -
GCMS with triple quad
mass spectrometric
detection with
TSQ9000 | EPA Method 8081
along with In house
development with
Manufacturer
Applications Engineer
using SOP 575 | | | 0.010 to 0.125 ug/L | Surface Water | Solvent extraction on
triple quad GCMSMS -
GCMS with triple quad
mass spectrometric
detection with
TSQ9000 | EPA Method 8081
along with In house
development with
Manufacturer
Applications Engineer
using SOP 575 | | Endosulfan I (Alpha) | 0.003 to 0.125 ug/L | Groundwater | Solvent extraction on
triple quad GCMSMS -
GCMS with triple quad
mass spectrometric | EPA Method 8081
along with In house
development with
Manufacturer | | | | | detection with
TSQ9000 | Applications Engineer using SOP 575 | |----------------------|---------------------|---------------|---|--| | | 0.009 to 0.125 ug/L | Surface Water | Solvent extraction on
triple quad GCMSMS -
GCMS with triple quad
mass spectrometric
detection with
TSQ9000 | EPA Method 8081
along with In house
development with
Manufacturer
Applications Engineer
using SOP 575 | | | 0.029 to 0.125 ug/L | Potable Water | Solvent extraction on
triple quad GCMSMS -
GCMS with triple quad
mass spectrometric
detection with
TSQ9000 | EPA Method 8081
along with In house
development with
Manufacturer
Applications Engineer
using SOP 575 | | Endosulfan II (Beta) | 0.004 to 0.125 ug/L | Surface Water | Solvent extraction on
triple quad GCMSMS -
GCMS with triple quad
mass spectrometric
detection with
TSQ9000 | EPA Method 8081
along with In house
development with
Manufacturer
Applications Engineer
using SOP 575 | | | 0.005 to 0.125 ug/L | Groundwater | Solvent extraction on
triple quad GCMSMS -
GCMS with triple quad
mass spectrometric
detection with
TSQ9000 | EPA Method 8081 along with In house development with Manufacturer Applications Engineer using SOP 575 | | | 0.008 to 0.125 ug/L | Potable Water | Solvent extraction on
triple quad GCMSMS -
GCMS with triple quad
mass spectrometric
detection with
TSQ9000 | EPA Method 8081
along with In house
development with
Manufacturer
Applications Engineer
using SOP 575 | | Endosulfan sulphate | 0.002 to 0.125 ug/L | Groundwater | Solvent extraction on
triple quad GCMSMS -
GCMS with triple quad
mass spectrometric
detection with
TSQ9000 | EPA Method 8081
along with In house
development with
Manufacturer
Applications Engineer
using SOP 575 | | | 0.002 to 0.125 ug/L | Surface Water | Solvent extraction on triple quad GCMSMS - GCMS with triple quad | EPA Method 8081
along with In house
development with | | | | | mass spectrometric detection with TSQ9000 | Manufacturer
Applications Engineer
using SOP 575 | |-----------------|---------------------|---------------|---|--| | | 0.007 to 0.125 ug/L | Potable Water | Solvent extraction on
triple quad GCMSMS -
GCMS with triple quad
mass spectrometric
detection with
TSQ9000 | EPA Method 8081
along with In house
development with
Manufacturer
Applications Engineer
using SOP 575 | | Endrin | 0.002 to 0.125 ug/L | Groundwater | Solvent extraction on
triple quad GCMSMS -
GCMS with triple quad
mass spectrometric
detection with
TSQ9000 | EPA Method 8081
along with In house
development with
Manufacturer
Applications Engineer
using SOP 575 | | | 0.004 to 0.125 ug/L | Surface Water | Solvent extraction on
triple quad GCMSMS -
GCMS with triple quad
mass spectrometric
detection with
TSQ9000 | EPA Method 8081
along with In house
development with
Manufacturer
Applications Engineer
using SOP 575 | | | 0.011 to 0.125 ug/L | Potable Water | Solvent extraction on
triple quad GCMSMS -
GCMS with triple quad
mass spectrometric
detection with
TSQ9000 | EPA Method 8081
along with In house
development with
Manufacturer
Applications Engineer
using SOP 575 | | Endrin Aldehyde | 0.002 to 0.125 ug/L | Groundwater | Solvent extraction on
triple quad GCMSMS -
GCMS with triple quad
mass spectrometric
detection with
TSQ9000 | EPA Method 8081
along with In house
development with
Manufacturer
Applications Engineer
using SOP 575 | | | 0.004 to 0.125 ug/L | Surface Water | Solvent extraction on
triple quad GCMSMS -
GCMS with triple quad
mass spectrometric
detection with
TSQ9000 | EPA Method 8081
along with In house
development with
Manufacturer
Applications Engineer
using SOP 575 | | | 0.007 to 0.125 ug/L | Potable Water | Solvent extraction on triple quad GCMSMS - | EPA Method 8081 along with In house | | | | | | GCMS with triple quad
mass spectrometric
detection with
TSQ9000 | development with
Manufacturer
Applications Engineer
using SOP 575 | |------|--------|----------------------|---------------|---|--| | HCH- | -alpha | 0.0003 to 0.125 ug/L | Surface Water | Solvent extraction on
triple quad GCMSMS -
GCMS with triple quad
mass spectrometric
detection with
TSQ9000 | EPA Method 8081
along with In house
development with
Manufacturer
Applications Engineer
using SOP 575 | | | | 0.001 to 0.125 ug/L | Groundwater | Solvent extraction on
triple quad GCMSMS
-
GCMS with triple quad
mass spectrometric
detection with
TSQ9000 | EPA Method 8081
along with In house
development with
Manufacturer
Applications Engineer
using SOP 575 | | | | 0.003 to 0.125 ug/L | Potable Water | Solvent extraction on
triple quad GCMSMS -
GCMS with triple quad
mass spectrometric
detection with
TSQ9000 | EPA Method 8081
along with In house
development with
Manufacturer
Applications Engineer
using SOP 575 | | HCH- | -beta | 0.001 to 0.125 ug/L | Groundwater | Solvent extraction on
triple quad GCMSMS -
GCMS with triple quad
mass spectrometric
detection with
TSQ9000 | EPA Method 8081
along with In house
development with
Manufacturer
Applications Engineer
using SOP 575 | | | | 0.0011 to 0.125 ug/L | Surface Water | Solvent extraction on
triple quad GCMSMS -
GCMS with triple quad
mass spectrometric
detection with
TSQ9000 | EPA Method 8081
along with In house
development with
Manufacturer
Applications Engineer
using SOP 575 | | | | 0.004 to 0.125 ug/L | Potable Water | Solvent extraction on
triple quad GCMSMS -
GCMS with triple quad
mass spectrometric
detection with
TSQ9000 | EPA Method 8081
along with In house
development with
Manufacturer
Applications Engineer
using SOP 575 | | HCH-delta | 0.001 to 0.125 ug/L | Groundwater | Solvent extraction on
triple quad GCMSMS -
GCMS with triple quad
mass spectrometric
detection with
TSQ9000 | EPA Method 8081
along with In house
development with
Manufacturer
Applications Engineer
using SOP 575 | |---------------------|---------------------|---------------|---|--| | | 0.002 to 0.125 ug/L | Surface Water | Solvent extraction on
triple quad GCMSMS -
GCMS with triple quad
mass spectrometric
detection with
TSQ9000 | EPA Method 8081
along with In house
development with
Manufacturer
Applications Engineer
using SOP 575 | | | 0.005 to 0.125 ug/L | Potable Water | Solvent extraction on
triple quad GCMSMS -
GCMS with triple quad
mass spectrometric
detection with
TSQ9000 | EPA Method 8081
along with In house
development with
Manufacturer
Applications Engineer
using SOP 575 | | HCH-gamma (Lindane) | 0.001 to 0.125 ug/L | Groundwater | Solvent extraction on
triple quad GCMSMS -
GCMS with triple quad
mass spectrometric
detection with
TSQ9000 | EPA Method 8081
along with In house
development with
Manufacturer
Applications Engineer
using SOP 575 | | | 0.003 to 0.125 ug/L | Potable Water | Solvent extraction on
triple quad GCMSMS -
GCMS with triple quad
mass spectrometric
detection with
TSQ9000 | EPA Method 8081
along with In house
development with
Manufacturer
Applications Engineer
using SOP 575 | | | 0.005 to 0.125 ug/L | Surface Water | Solvent extraction on
triple quad GCMSMS -
GCMS with triple quad
mass spectrometric
detection with
TSQ9000 | EPA Method 8081
along with In house
development with
Manufacturer
Applications Engineer
using SOP 575 | | Heptachlor | 0.002 to 0.125 ug/L | Surface Water | Solvent extraction on
triple quad GCMSMS -
GCMS with triple quad
mass spectrometric | EPA Method 8081
along with In house
development with
Manufacturer | | | | | detection with
TSQ9000 | Applications Engineer using SOP 575 | |--------------------|---------------------|---------------|---|--| | | 0.005 to 0.125 ug/L | Potable Water | Solvent extraction on
triple quad GCMSMS -
GCMS with triple quad
mass spectrometric
detection with
TSQ9000 | EPA Method 8081
along with In house
development with
Manufacturer
Applications Engineer
using SOP 575 | | | 0.010 to 0.125 ug/L | Groundwater | Solvent extraction on
triple quad GCMSMS -
GCMS with triple quad
mass spectrometric
detection with
TSQ9000 | EPA Method 8081
along with In house
development with
Manufacturer
Applications Engineer
using SOP 575 | | Heptachlor epoxide | 0.002 to 0.125 ug/L | Surface Water | Solvent extraction on
triple quad GCMSMS -
GCMS with triple quad
mass spectrometric
detection with
TSQ9000 | EPA Method 8081
along with In house
development with
Manufacturer
Applications Engineer
using SOP 575 | | | 0.003 to 0.125 ug/L | Potable Water | Solvent extraction on
triple quad GCMSMS -
GCMS with triple quad
mass spectrometric
detection with
TSQ9000 | EPA Method 8081 along with In house development with Manufacturer Applications Engineer using SOP 575 | | | 0.004 to 0.125 ug/L | Groundwater | Solvent extraction on
triple quad GCMSMS -
GCMS with triple quad
mass spectrometric
detection with
TSQ9000 | EPA Method 8081
along with In house
development with
Manufacturer
Applications Engineer
using SOP 575 | | Hexachlorobenzene | 0.004 to 0.125 ug/L | Groundwater | Solvent extraction on
triple quad GCMSMS -
GCMS with triple quad
mass spectrometric
detection with
TSQ9000 | EPA Method 8081
along with In house
development with
Manufacturer
Applications Engineer
using SOP 575 | | | 0.007 to 0.125 ug/L | Potable Water | Solvent extraction on triple quad GCMSMS - GCMS with triple quad | EPA Method 8081
along with In house
development with | | | | | mass spectrometric
detection with
TSQ9000 | Manufacturer
Applications Engineer
using SOP 575 | |-------------|---------------------|---------------|---|---| | | 0.010 to 0.125 ug/L | Surface Water | Solvent extraction on
triple quad GCMSMS -
GCMS with triple quad
mass spectrometric
detection with
TSQ9000 | EPA Method 8081
along with In house
development with
Manufacturer
Applications Engineer
using SOP 575 | | Metaldehyde | 0.015 to 0.125 ug/L | Groundwater | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L Level Utilizing Online Sample Preparation with LC- MS along with in house development with Thermo Applications Engineer using SOP 557 | | | 0.015 to 0.125 ug/L | Potable Water | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA
1694 Pharmaceuticals
and Personal Care
Products in Water at
the ng/L Level Utilizing
Online Sample
Preparation with LC-
MS along with in
house development
with Thermo
Applications Engineer
using SOP 557 | | | 0.015 to 0.125 ug/L | Surface Water | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA
1694 Pharmaceuticals
and Personal Care
Products in Water at
the ng/L Level Utilizing
Online Sample
Preparation with LC-
MS along with in
house development | | | | | | with Thermo
Applications Engineer
using SOP 557 | |------------------|---------------------|---------------|---|--| | o,p DDT | 0.001 to 0.125 ug/L | Groundwater | Solvent extraction on
triple quad GCMSMS -
GCMS with triple quad
mass spectrometric
detection with
TSQ9000 | EPA Method 8081
along with In house
development with
Manufacturer
Applications Engineer
using SOP 575 | | | 0.001 to 0.125 ug/L | Surface Water | Solvent extraction on
triple quad GCMSMS -
GCMS with triple quad
mass spectrometric
detection with
TSQ9000 | EPA Method 8081
along with In house
development with
Manufacturer
Applications Engineer
using SOP 575 | | | 0.003 to 0.125 ug/L | Potable Water | Solvent extraction on
triple quad GCMSMS -
GCMS with triple quad
mass spectrometric
detection with
TSQ9000 | EPA Method 8081
along with In house
development with
Manufacturer
Applications Engineer
using SOP 575 | | trans Permethrin | 0.001 to 0.125 ug/L | Surface Water | Solvent extraction on
triple quad GCMSMS -
GCMS with triple quad
mass spectrometric
detection with
TSQ9000 | EPA Method 8081
along with In house
development with
Manufacturer
Applications Engineer
using SOP 575 | | | 0.002 to 0.125 ug/L | Groundwater | Solvent extraction on
triple quad GCMSMS -
GCMS with triple quad
mass spectrometric
detection with
TSQ9000 | EPA Method 8081
along with In house
development with
Manufacturer
Applications Engineer
using SOP 575 | | | 0.004 to 0.125 ug/L | Potable Water | Solvent extraction on
triple quad GCMSMS -
GCMS with triple quad
mass spectrometric
detection with
TSQ9000 | EPA Method 8081
along with In house
development with
Manufacturer
Applications Engineer
using SOP 575
| | Determination of
Pesticides Negative
LC Suite | Bentazone | 0.001 to 0.25 ug/L | Groundwater | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA
1694 Pharmaceuticals
and Personal Care
Products in Water at
the ng/L level utilizing
online sample
preparation with LC-
MS/MS along with in
house development
with Manufacturer
Applications Engineer
using SOP 543 | |---|------------|--------------------|---------------|---|--| | | | 0.002 to 0.25 ug/L | Surface Water | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA
1694 Pharmaceuticals
and Personal Care
Products in Water at
the ng/L level utilizing
online sample
preparation with LC-
MS/MS along with in
house development
with Manufacturer
Applications Engineer
using SOP 543 | | | | 0.007 to 0.25 ug/L | Potable Water | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 543 | | | Bromoxynil | 0.002 to 0.25 ug/L | Groundwater | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA
1694 Pharmaceuticals
and Personal Care
Products in Water at
the ng/L level utilizing
online sample
preparation with LC- | | | | | | MS/MS along with in
house development
with Manufacturer
Applications Engineer
using SOP 543 | |--|------------|--------------------|--|--| | | | 0.002 to 0.25 ug/L | spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA
1694 Pharmaceuticals
and Personal Care
Products in Water at
the ng/L level utilizing
online sample
preparation with LC-
MS/MS along with in
house development
with Manufacturer
Applications Engineer
using SOP 543 | | | | 0.007 to 0.25 ug/L | Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 543 | | | Clopyralid | 0.002 to 0.25 ug/L | Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 543 | | | 0.002 to 0.25 ug/L | Surface Water | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 543 | |---------|--------------------|---------------|---|---| | | 0.007 to 0.25 ug/L | Potable Water | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 543 | | Dicamba | 0.003 to 0.25 ug/L | Groundwater | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 543 | | | 0.003 to 0.25 ug/L | Potable Water | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA
1694 Pharmaceuticals
and Personal Care
Products in Water at
the ng/L level utilizing
online sample
preparation with LC- | | | | | | MS/MS along with in house development with Manufacturer Applications Engineer using SOP 543 | |--|---------------|---------------------|---|---| | | | 0.003 to 0.25 ug/L | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 543 | | | Dichlorprop-P | 0.0036 to 0.25 ug/L | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 543 | | | | 0.005 to 0.25 ug/L | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 543 | | | 0.005 to 0.25 ug/L | Surface Water | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 543 | |----------|---------------------|---------------|---|---| | Fenoprop | 0.001 to 0.25 ug/L | Groundwater | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 543 | | | 0.0011 to 0.25 ug/L | Surface Water | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 543 | | | 0.003 to 0.25 ug/L | Potable Water | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA
1694 Pharmaceuticals
and Personal Care
Products in Water at
the ng/L level utilizing
online sample
preparation with LC- | | | | | | MS/MS along with in
house development
with Manufacturer
Applications Engineer
using SOP 543 | |--|------------|--------------------|--|---| | | Fluroxypyr | 0.001 to 0.25 ug/L | spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications
Engineer using SOP 543 | | | | 0.002 to 0.25 ug/L | spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 543 | | | | 0.010 to 0.25 ug/L | Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | and Personal Care
Products in Water at | | MCPA | 0.0009 to 0.25 ug/L | Surface Water | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA
1694 Pharmaceuticals
and Personal Care
Products in Water at
the ng/L level utilizing
online sample
preparation with LC-
MS/MS along with in
house development
with Manufacturer
Applications Engineer
using SOP 543 | |------|---------------------|---------------|---|--| | | 0.0023 to 0.25 ug/L | Groundwater | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA
1694 Pharmaceuticals
and Personal Care
Products in Water at
the ng/L level utilizing
online sample
preparation with LC-
MS/MS along with in
house development
with Manufacturer
Applications Engineer
using SOP 543 | | | 0.0030 to 0.25 ug/L | Potable Water | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA
1694 Pharmaceuticals
and Personal Care
Products in Water at
the ng/L level utilizing
online sample
preparation with LC-
MS/MS along with in
house development
with Manufacturer
Applications Engineer
using SOP 543 | | MCPB | 0.002 to 0.25 ug/L | Surface Water | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA
1694 Pharmaceuticals
and Personal Care
Products in Water at
the ng/L level utilizing
online sample
preparation with LC- | | | | | | MS/MS along with in
house development
with Manufacturer
Applications Engineer
using SOP 543 | |--|----------|---------------------|--|---| | | | 0.003 to 0.25 ug/L | Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 543 | | | | 0.010 to 0.25 ug/L | Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 543 | | | Mecoprop | 0.0012 to 0.25 ug/L | Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 543 | | | 0.0024 to 0.25 ug/L | Groundwater | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 543 | |-------------------|---------------------|---------------|---|--| | | 0.0037 to 0.25 ug/L | Potable Water | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA
1694 Pharmaceuticals
and Personal Care
Products in Water at
the ng/L level utilizing
online sample
preparation with LC-
MS/MS along with in
house development
with Manufacturer
Applications Engineer
using SOP 543 | | PentaChloroPhenol | 0.001 to 0.25 ug/L | Groundwater | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA
1694 Pharmaceuticals
and Personal Care
Products in Water at
the ng/L level utilizing
online sample
preparation with LC-
MS/MS along with in
house development
with Manufacturer
Applications Engineer
using SOP 543 | | | 0.002 to 0.25 ug/L | Surface Water | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA
1694 Pharmaceuticals
and Personal Care
Products in Water at
the ng/L level utilizing
online sample
preparation with LC- | | | | | | MS/MS along with in house development with Manufacturer Applications Engineer using SOP 543 | |--|----------|--------------------|--|---| | | | 0.007 to 0.25 ug/L | multiple reaction mode (MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 543 | | | Picloram | 0.002 to 0.25 ug/L | spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 543 | | | | 0.002 to 0.25 ug/L | Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA
1694 Pharmaceuticals
and Personal Care
Products in Water at | | | | 0.007 to 0.25 ug/L | Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 543 | |--|-----------|---------------------|--|---| | | Triclopyr | 0.0013 to 0.25 ug/L | spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 543 | | | | 0.0013 to 0.25 ug/L | spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 543 | | | | 0.0040 to 0.25 ug/L | Mass Spec. with Mass spectrometric | Quantification of EPA
1694 Pharmaceuticals
and Personal Care
Products in Water at
the ng/L level utilizing
online sample
preparation with LC- | | | | | | MS/MS along with in
house development
with Manufacturer
Applications Engineer
using SOP 543 | |-----------------------------|--------------------|---------------|---|--| | 2,3,6 Trichlorobenzoic acid | 0.005 to 0.25 ug/L | Groundwater | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA
1694 Pharmaceuticals
and Personal Care
Products in Water at
the ng/L level
utilizing
online sample
preparation with LC-
MS/MS along with in
house development
with Manufacturer
Applications Engineer
using SOP 543 | | | 0.005 to 0.25 ug/L | Surface Water | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 543 | | | 0.017 to 0.25 ug/L | Potable Water | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 543 | | 2,4,5-T | 0.0007 to 0.25 ug/L | Groundwater | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 543 | |---------|---------------------|---------------|---|---| | | 0.0013 to 0.25 ug/L | Surface Water | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC-MS/MS along with in house development with Manufacturer Applications Engineer using SOP 543 | | | 0.003 to 0.25 ug/L | Potable Water | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC-MS/MS along with in house development with Manufacturer Applications Engineer using SOP 543 | | 2,4-D | 0.0006 to 0.25 ug/L | Groundwater | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA
1694 Pharmaceuticals
and Personal Care
Products in Water at
the ng/L level utilizing
online sample
preparation with LC- | | | | | | MS/MS along with in
house development
with Manufacturer
Applications Engineer
using SOP 543 | |--|-----------|---------------------|---|---| | | | 0.0008 to 0.25 ug/L | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 543 | | | | 0.0040 to 0.25 ug/L | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 543 | | | Benazolin | 0.005 to 0.25 ug/L | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 543 | | | | 0.005 to 0.25 ug/L | Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 543 | |-------------------------------|----------|---------------------|--|--| | | | 0.016 to 0.25 ug/L | spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA
1694 Pharmaceuticals
and Personal Care
Products in Water at
the ng/L level utilizing
online sample
preparation with LC-
MS/MS along with in
house development
with Manufacturer
Applications Engineer
using SOP 543 | | mination of Aides Positive LC | Asulam H | 0.0018 to 0.25 ug/L | spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 | | | | 0.0026 to 0.25 ug/L | spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA
1694 Pharmaceuticals
and Personal Care
Products in Water at
the ng/L level utilizing
online sample
preparation with LC- | | | | | | MS/MS along with in
house development
with Manufacturer
Applications Engineer
using SOP 540 | |--|----------|---------------------|---|---| | | | 0.007 to 0.25 ug/L | Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 | | | Atrazine | 0.0005 to 0.25 ug/L | Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 | | | | 0.001 to 0.25 ug/L | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 | | | 0.003 to 0.25 ug/L | | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 | |----------|---------------------|---------------|---|---| | Boscalid | 0.0008 to 0.25 ug/L | Surface Water | | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 | | | 0.002 to 0.25 ug/L | | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 | | | 0.003 to 0.25 ug/L | Potable Water | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA
1694 Pharmaceuticals
and Personal Care
Products in Water at
the ng/L level utilizing
online sample
preparation with LC- | | | | | | MS/MS along with in
house development
with Manufacturer
Applications Engineer
using SOP 540 | |--|----------|--------------------|---
---| | | Bromacil | 0.001 to 0.25 ug/L | | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 | | | | 0.002 to 0.25 ug/L | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 | | | | 0.007 to 0.25 ug/L | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 | | Carbaryl | 0.001 to 0.25 ug/L | Surface Water | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA
1694 Pharmaceuticals
and Personal Care
Products in Water at
the ng/L level utilizing
online sample
preparation with LC-
MS/MS along with in
house development
with Manufacturer
Applications Engineer
using SOP 540 | |-------------|--------------------|---------------|---|--| | | 0.002 to 0.25 ug/L | Groundwater | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA
1694 Pharmaceuticals
and Personal Care
Products in Water at
the ng/L level utilizing
online sample
preparation with LC-
MS/MS along with in
house development
with Manufacturer
Applications Engineer
using SOP 540 | | | 0.003 to 0.25 ug/L | Potable Water | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC-MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 | | Carbetamide | 0.001 to 0.25 ug/L | Surface Water | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA
1694 Pharmaceuticals
and Personal Care
Products in Water at
the ng/L level utilizing
online sample
preparation with LC- | | | | | | MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 | |--|-------------------|--------------------|---|---| | | | 0.002 to 0.25 ug/L | detection (MSD) in multiple reaction mode (MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 | | | | 0.003 to 0.25 ug/L | | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 | | | Chlorfenvinphos-B | 0.001 to 0.25 ug/L | | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 | | | 0.001 to 0.25 ug/L | Surface Water | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 | |--------------|--------------------|---------------|---|--| | | 0.007 to 0.25 ug/L | Potable Water | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA
1694 Pharmaceuticals
and Personal Care
Products in Water at
the ng/L level utilizing
online sample
preparation with LC-
MS/MS along with in
house development
with Manufacturer
Applications Engineer
using SOP 540 | | Chlortoluron | 0.001 to 0.25 ug/L | Groundwater | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 | | | 0.001 to 0.25 ug/L | Surface Water | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA
1694 Pharmaceuticals
and Personal Care
Products in Water at
the ng/L level utilizing
online sample
preparation with LC- | | | | | | MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 | |--|---------------|--------------------|--|---| | | | 0.007 to 0.25 ug/L | Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | and Personal Care
Products in Water at | | | Cyproconazole | 0.001 to 0.25 ug/L | Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 | | | | 0.001 to 0.25 ug/L | Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | and Personal Care
Products in Water at | | | 0.003 to 0.25 ug/L | Potable Water | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 | |----------|--------------------|---------------|---|---| | Diazinon | 0.005 to 0.25 ug/L | Groundwater | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 | | | 0.006 to 0.25 ug/L | Surface Water | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 | | | 0.020 to 0.25 ug/L | Potable Water | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA
1694 Pharmaceuticals
and Personal Care
Products in Water at
the ng/L level utilizing
online sample
preparation with LC- | | | | | | | | MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 | |--|--------------|--------------------|--------------------|------------------------------
---|---| | | Diflufenican | 0.003 to 0.25 ug/L | Groundwater | multiple reaction mode (MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 | | | | | | 0.003 to 0.25 ug/L | Surface Water | Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 | | | | | 0.010 to 0.25 ug/L | | detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 | | Dimethoate | 0.001 to 0.25 ug/L | Groundwater | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 | |------------|---------------------|---------------|---|--| | | 0.002 to 0.25 ug/L | Surface Water | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA
1694 Pharmaceuticals
and Personal Care
Products in Water at
the ng/L level utilizing
online sample
preparation with LC-
MS/MS along with in
house development
with Manufacturer
Applications Engineer
using SOP 540 | | | 0.007 to 0.25 ug/L | Potable Water | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA
1694 Pharmaceuticals
and Personal Care
Products in Water at
the ng/L level utilizing
online sample
preparation with LC-
MS/MS along with in
house development
with Manufacturer
Applications Engineer
using SOP 540 | | Diuron | 0.0004 to 0.25 ug/L | Surface Water | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA
1694 Pharmaceuticals
and Personal Care
Products in Water at
the ng/L level utilizing
online sample
preparation with LC- | | | | | | MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 | |--|---------------|---------------------|--|---| | | | 0.0008 to 0.25 ug/L | spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 | | | | 0.003 to 0.25 ug/L | spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 | | | Epoxiconazole | 0.001 to 0.25 ug/L | spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 | | | 0.001 to 0.25 ug/L | Surface Water | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 | |-------------|--------------------|---------------|---|--| | | 0.003 to 0.25 ug/L | Potable Water | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA
1694 Pharmaceuticals
and Personal Care
Products in Water at
the ng/L level utilizing
online sample
preparation with LC-
MS/MS along with in
house development
with Manufacturer
Applications Engineer
using SOP 540 | | Fenpropidin | 0.001 to 0.25 ug/L | Groundwater | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA
1694 Pharmaceuticals
and Personal Care
Products in Water at
the ng/L level utilizing
online sample
preparation with LC-
MS/MS along with in
house development
with Manufacturer
Applications Engineer
using SOP 540 | | | 0.001 to 0.25 ug/L | Surface Water | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA
1694 Pharmaceuticals
and Personal Care
Products in Water at
the ng/L level utilizing
online sample
preparation with LC- | | | | | | MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 | |--|---------------|--------------------|---|---| | | | 0.007 to 0.25 ug/L | | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 | | | Fenpropimorph | 0.001 to 0.25 ug/L | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 | | | | 0.001 to 0.25 ug/L | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 | | | | 0.007 to 0.25 ug/L | Potable Water | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 | |--|------------|--------------------|---------------|---|---| | | Flutriafol | 0.001 to 0.25 ug/L | Groundwater | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 | | | | 0.002 to 0.25 ug/L | Surface Water | (MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP
540 | | | | 0.010 to 0.25 ug/L | Potable Water | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA
1694 Pharmaceuticals
and Personal Care
Products in Water at
the ng/L level utilizing
online sample
preparation with LC- | | | | | | | MS/MS along with in
house development
with Manufacturer
Applications Engineer
using SOP 540 | |--|-------------|---------------------|--|---|---| | | Isoproturon | 0.0005 to 0.25 ug/L | Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 | | | | | | 0.001 to 0.25 ug/L | Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 | | | | | 0.003 to 0.25 ug/L | Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 | | Kresoxim-methyl | 0.001 to 0.25 ug/L | Groundwater | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 | |-----------------|---------------------|---------------|---|--| | | 0.002 to 0.25 ug/L | Surface Water | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA
1694 Pharmaceuticals
and Personal Care
Products in Water at
the ng/L level utilizing
online sample
preparation with LC-
MS/MS along with in
house development
with Manufacturer
Applications Engineer
using SOP 540 | | | 0.007 to 0.25 ug/L | Potable Water | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 | | Linuron | 0.0005 to 0.25 ug/L | Surface Water | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA
1694 Pharmaceuticals
and Personal Care
Products in Water at
the ng/L level utilizing
online sample
preparation with LC- | | | | | | MS/MS along with in
house development
with Manufacturer
Applications Engineer
using SOP 540 | |--|-----------|--------------------|--|---| | | | 0.002 to 0.25 ug/L | Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 | | | | 0.003 to 0.25 ug/L | Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 | | | Malathion | 0.001 to 0.25 ug/L | Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 | | | 0.002 to 0.25 ug/L | Surface Water | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 | |-----------|--------------------|---------------|---|---| | | 0.007 to 0.25 ug/L | Potable Water | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 | | Metalaxyl | 0.001 to 0.25 ug/L | Groundwater | LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 | | | 0.001 to 0.25 ug/L | Surface Water | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA
1694 Pharmaceuticals
and Personal Care
Products in Water at
the ng/L level utilizing
online sample
preparation with LC- | | | | | | MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 | |--|------------|---------------------|--|---| | | | 0.007 to 0.25 ug/L | detection (MSD) in
multiple reaction mode
(MRM) | and Personal Care
Products in Water at | | | Metamitron | 0.0007 to 0.25 ug/L | spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 | | | | 0.002 to 0.25 ug/L | Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | and Personal Care
Products in Water at | | | 0.005 to 0.25 ug/L | Potable Water | spectrometric
detection (MSD) in | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 | |-------------|--------------------|---------------|-------------------------------------|---| | Metazachlor | 0.001 to 0.25 ug/L | Groundwater | spectrometric detection (MSD) in | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 | | | 0.007 to 0.25 ug/L | Potable Water | spectrometric
detection (MSD) in | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 |
 | 0.014 to 0.25 ug/L | Surface Water | spectrometric
detection (MSD) in | Quantification of EPA
1694 Pharmaceuticals
and Personal Care
Products in Water at
the ng/L level utilizing
online sample
preparation with LC- | | | | | | | MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 | |--|-----------|--------------------|------------------------------|---|---| | | Metoxuron | 0.001 to 0.25 ug/L | multiple reaction mode (MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 | | | | | 0.001 to 0.25 ug/L | | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 | | | | | | 0.003 to 0.25 ug/L | multiple reaction mode (MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 | | Mevinphos | 0.002 to 0.25 ug/L | Groundwater | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 | |-----------|--------------------|---------------|---|--| | | 0.002 to 0.25 ug/L | Surface Water | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA
1694 Pharmaceuticals
and Personal Care
Products in Water at
the ng/L level utilizing
online sample
preparation with LC-
MS/MS along with in
house development
with Manufacturer
Applications Engineer
using SOP 540 | | | 0.003 to 0.25 ug/L | Potable Water | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA
1694 Pharmaceuticals
and Personal Care
Products in Water at
the ng/L level utilizing
online sample
preparation with LC-
MS/MS along with in
house development
with Manufacturer
Applications Engineer
using SOP 540 | | Monuron | 0.001 to 0.25 ug/L | Groundwater | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA
1694 Pharmaceuticals
and Personal Care
Products in Water at
the ng/L level utilizing
online sample
preparation with LC- | | | | | | MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 | |--|------------------|--------------------|--|---| | | | 0.001 to 0.25 ug/L | spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 | | | | 0.007 to 0.25 ug/L | (MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 | | | Parathion Methyl | 0.001 to 0.25 ug/L | Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 | | | 0.001 to 0.25 ug/L | Surface Water | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 | |--------------|----------------------|---------------|---|--| | | 0.007 to 0.25 ug/L | Potable Water | LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM) | Quantification of EPA
1694 Pharmaceuticals
and Personal Care
Products in Water at
the ng/L level utilizing
online sample
preparation with LC-
MS/MS along with in
house development
with Manufacturer
Applications Engineer
using SOP 540 | | Pendimethali | n 0.002 to 0.25 ug/L | Surface Water | LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC-MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 | | | 0.003 to 0.25 ug/L | Groundwater | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA
1694 Pharmaceuticals
and Personal Care
Products in Water at
the ng/L level utilizing
online sample
preparation with LC- | | | | | | MS/MS along with in
house development
with Manufacturer
Applications Engineer
using SOP 540 | |--|-----------|---------------------|---|---| | | | 0.007 to 0.25 ug/L | (MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 | | | Propazine | 0.0009 to 0.25 ug/L | | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 | | | | 0.002 to 0.25 ug/L | detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 | | | 0.003 to 0.25 ug/L | Potable Water | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 | |---------------|--------------------|---------------|---|--| | Propiconazole | 0.001 to 0.25 ug/L | Surface Water | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA
1694 Pharmaceuticals
and Personal Care
Products in Water at
the ng/L level utilizing
online sample
preparation with LC-
MS/MS along with in
house development
with Manufacturer
Applications Engineer
using SOP 540 | | | 0.002 to 0.25 ug/L | Groundwater | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level
utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 | | | 0.003 to 0.25 ug/L | Potable Water | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA
1694 Pharmaceuticals
and Personal Care
Products in Water at
the ng/L level utilizing
online sample
preparation with LC- | | | | | | MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 | |--|-------------|--------------------|--|---| | | Propyzamide | 0.001 to 0.25 ug/L | spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 | | | | 0.001 to 0.25 ug/L | spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 | | | | 0.007 to 0.25 ug/L | Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 | | Quinmerac | 0.003 to 0.25 ug/L | Groundwater | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA
1694 Pharmaceuticals
and Personal Care
Products in Water at
the ng/L level utilizing
online sample
preparation with LC-
MS/MS along with in
house development
with Manufacturer
Applications Engineer
using SOP 540 | |-----------|--------------------|---------------|---|--| | | 0.007 to 0.25 ug/L | Potable Water | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA
1694 Pharmaceuticals
and Personal Care
Products in Water at
the ng/L level utilizing
online sample
preparation with LC-
MS/MS along with in
house development
with Manufacturer
Applications Engineer
using SOP 540 | | | 0.015 to 0.25 ug/L | Surface Water | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA
1694 Pharmaceuticals
and Personal Care
Products in Water at
the ng/L level utilizing
online sample
preparation with LC-
MS/MS along with in
house development
with Manufacturer
Applications Engineer
using SOP 540 | | Simazine | 0.001 to 0.25 ug/L | Groundwater | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA
1694 Pharmaceuticals
and Personal Care
Products in Water at
the ng/L level utilizing
online sample
preparation with LC- | | | | | | MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 | |--|----------|--------------------|--|---| | | | 0.001 to 0.25 ug/L | Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 | | | | 0.003 to 0.25 ug/L | Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 | | | Sulfotep | 0.001 to 0.25 ug/L | Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 | | | 0.002 to 0.25 ug/L | Groundwater | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 | |--------------|--------------------|---------------|---|---| | | 0.003 to 0.25 ug/L | Potable Water | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 | | Tebuconazole | 0.001 to 0.25 ug/L | Groundwater | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 | | | 0.001 to 0.25 ug/L | Surface Water | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA
1694 Pharmaceuticals
and Personal Care
Products in Water at
the ng/L level utilizing
online sample
preparation with LC- | | | | | | MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 | |--|-------------|--------------------|--|---| | | | 0.003 to 0.25 ug/L | Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | and Personal Care
Products in Water at | | | Triadimefon | 0.001 to 0.25 ug/L | Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | and Personal Care
Products in Water at | | | | 0.001 to 0.25 ug/L | Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | and Personal Care
Products in Water at | | | | 0.003 to 0.25 ug/L | Potable Water | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 | |---|----------|--------------------|---------------|---|---| | Т | riallate | 0.003 to 0.25 ug/L | Surface Water | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 | | | | 0.005 to 0.25 ug/L | Groundwater | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 | | | | 0.013 to 0.25 ug/L | Potable Water | LCMSMS - HPLC
Mass Spec. with
Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA
1694 Pharmaceuticals
and Personal Care
Products in Water at
the ng/L level utilizing
online sample
preparation with LC- | | | | | | | MS/MS along with in
house development
with Manufacturer
Applications Engineer
using SOP 540 | |--|-----------------------|--------------------|---------------|---|---| | | 2,6-Dichlorobenzamide | 0.001 to 0.25 ug/L | Groundwater | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 | | | | 0.001 to 0.25 ug/L | Surface Water | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 | | | | 0.003 to 0.25 ug/L | Potable Water | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540 | | | Determination of
Metals by ICP-MS | Aluminium | 12 to 1000 ug/L
(extended by dilution) | Industrial Effluent | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | |--|--------------------------------------|-----------|--|--|---------------------|--|--| | | | | 14 to 1000 ug/L
(extended by dilution) | Sewage Effluent | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | | | | 3 to 1000 ug/L
(extended by dilution) | Surface Water | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | | | | 8 to 1000 ug/L
(extended by dilution) | Groundwater | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | | | | 9 to 1000 ug/L
(extended by dilution) | Potable Water | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | | | Antimony | Antimony | 2 to 1000 ug/L
(extended by dilution) | Industrial Effluent | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | | | 2 to 1000 ug/L
(extended by dilution) | Sewage Effluent | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | | | | 2.0 to 1000 ug/L
(extended by dilution) | Potable Water | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | | 3 to 1000 ug/L
(extended by dilution) | Surface Water | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | |---------|--|---------------------|--------|--| | | 4 to 1000 ug/L
(extended by dilution) | Groundwater | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | Arsenic | 1 to 1000 ug/L
(extended by dilution) | Groundwater | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | 1 to 1000 ug/L
(extended by dilution) | Industrial Effluent | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | 1 to 1000 ug/L
(extended by dilution) | Sewage Effluent | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | 1 to 1000 ug/L
(extended by dilution) | Surface Water | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | 2 to 1000 ug/L
(extended by dilution) | Potable Water | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | Barium | 1 to 1000 ug/L
(extended by dilution) | Potable Water | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | 2 to 1000 ug/L | Groundwater | ICP-MS | Standard Method for | |-----------|--|---------------------|--------|--| | | (extended by dilution) | Croundinator | | the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | 2 to 1000 ug/L
(extended by dilution) | Surface Water | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | 3 to 1000 ug/L
(extended by dilution) | Industrial Effluent | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | 4 to 1000 ug/L
(extended by dilution) | Sewage Effluent | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | Beryllium | 1 to 1000 ug/L
(extended by dilution) | Groundwater | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | 1 to 1000 ug/L
(extended by dilution) | Industrial Effluent | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | 1 to 1000 ug/L
(extended by dilution) | Potable Water | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | 1 to 1000 ug/L
(extended by dilution) | Sewage Effluent | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | 1 to 1000 ug/L
(extended by dilution) | Surface Water | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | |---------|---|---------------------|--------|--| | Boron | 0.020 to 100 mg/L
(extended by dilution) | Potable Water | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | 10 to 1000 ug/L
(extended by dilution) | Industrial Effluent | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | 16 to 1000 ug/L
(extended by dilution) | Groundwater | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | 8 to 1000 ug/L
(extended by dilution) | Sewage Effluent | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | 9 to 1000 ug/L
(extended by dilution) | Surface Water | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | Cadmium | 1 to 1000 ug/L
(extended by dilution) | Groundwater | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | 1 to 1000 ug/L
(extended by dilution) | Industrial Effluent | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | 1 to 1000 ug/L
(extended by dilution) | Potable Water | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | |---------|---|---------------------|--------|---| | | 1 to 1000 ug/L
(extended by dilution) | Sewage Effluent | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | 1 to 1000 ug/L
(extended by dilution) | Surface Water | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | Calcium | 0.4 to 100 mg/L
(extended by dilution) | Sewage Effluent | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3120 B using
SOP 184 | | | 0.6 to 100 mg/L
(extended by dilution) | Industrial Effluent | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3120 B using
SOP 184 | | | 0.6 to 100 mg/L
(extended by dilution) | Surface Water | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3120 B using
SOP 184 | | | 0.9 to 100 mg/L (extended by dilution) | Groundwater | ICP-MS |
Standard Method for
the Examination of
Water and Wastewater
Method 3120 B using
SOP 184 | | | 1 to 100 mg/L
(extended by dilution) | Potable Water | ICP-MS | SOP 184
Standard Method for
the Examination of
Water and Wastewater
Method 3120 B Edition
23 | | | _ | | _ | | |----------|--|---------------------|--------|--| | Cesium | 1 to 1000 ug/L
(extended by dilution) | Groundwater | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | 1 to 1000 ug/L
(extended by dilution) | Industrial Effluent | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | 1 to 1000 ug/L
(extended by dilution) | Potable Water | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | 1 to 1000 ug/L
(extended by dilution) | Sewage Effluent | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | 2 to 1000 ug/L
(extended by dilution) | Surface Water | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | Chromium | 1 to 1000 ug/L
(extended by dilution) | Industrial Effluent | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | 1 to 1000 ug/L
(extended by dilution) | Sewage Effluent | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | 1 to 1000 ug/L
(extended by dilution) | Surface Water | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | 2 to 1000 ug/L
(extended by dilution) | Groundwater | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | |--------|---|---------------------|--------|--| | | 4 to 1000 ug/L
(extended by dilution) | Potable Water | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | Cobalt | 1 to 1000 ug/L
(extended by dilution) | Groundwater | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | 1 to 1000 ug/L
(extended by dilution) | Industrial Effluent | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | 1 to 1000 ug/L
(extended by dilution) | Potable Water | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | 1 to 1000 ug/L
(extended by dilution) | Sewage Effluent | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | 1 to 1000 ug/L
(extended by dilution) | Surface Water | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | Copper | 0.003 to 100 mg/L
(extended by dilution) | Potable Water | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | 1 to 1000 ug/L
(extended by dilution) | Groundwater | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | |---------|--|---------------------|--------|--| | | 2 to 1000 ug/L
(extended by dilution) | Surface Water | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | 3 to 1000 ug/L
(extended by dilution) | Industrial Effluent | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | 6 to 1000 ug/L
(extended by dilution) | Sewage Effluent | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | Gallium | 1 to 1000 ug/L
(extended by dilution) | Groundwater | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | 1 to 1000 ug/L
(extended by dilution) | Industrial Effluent | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | 1 to 1000 ug/L
(extended by dilution) | Potable Water | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | 1 to 1000 ug/L
(extended by dilution) | Sewage Effluent | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | | 1 to 1000 ug/L
(extended by dilution) | Surface Water | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | |--|------|---|---------------------|--------|--| | | Iron | 14 to 1000 ug/L
(extended by dilution) | Potable Water | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | | 22 to 1000 ug/L
(extended by dilution) | Industrial Effluent | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | | 25 to 1000 ug/L
(extended by dilution) | Sewage Effluent | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | | 3 to 1000 ug/L
(extended by dilution) | Surface Water | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | | 8 to 1000 ug/L
(extended by dilution) | Groundwater | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | Lead | 1 to 1000 ug/L
(extended by dilution) | Groundwater | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | | 1 to 1000 ug/L
(extended by dilution) | Industrial Effluent | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | 1 to 1000 ug/L
(extended by dilution) | Potable Water | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | |---------|--|---------------------|--------|--| | | 1 to 1000 ug/L
(extended by dilution) | Sewage Effluent | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | 1 to 1000 ug/L
(extended by dilution) | Surface Water | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | Lithium | 1 to 1000 ug/L
(extended by dilution) | Industrial Effluent | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | 2 to 1000 ug/L
(extended by dilution) | Groundwater | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | 2 to 1000 ug/L
(extended by dilution) | Sewage Effluent | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | 4 to 1000 ug/L
(extended by dilution) | Potable Water | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | 4 to 1000 ug/L (extended by dilution) | Surface Water | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | Magnesium | 0.1 to 100 mg/L
(extended by dilution) | Groundwater | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3120 B using
SOP 184 | |-----------|---|---------------------|--------|---| | | 0.1 to 100 mg/L
(extended by dilution) | Industrial Effluent | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3120 B using
SOP 184 | | | 0.1 to 100 mg/L
(extended by dilution) | Sewage Effluent | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3120 B using
SOP 184 | | | 0.1 to 100 mg/L
(extended by dilution) | Surface Water | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3120 B using
SOP 184 | | | 0.5 to 100 mg/L (extended by dilution) | Potable Water | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3120 B using
SOP 184 | | Manganese | 1 to 1000 ug/L
(extended by dilution) | Groundwater | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | 1 to 1000 ug/L
(extended by dilution) | Surface Water | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | 18 to 1000 ug/L
(extended by dilution) | Industrial Effluent | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | 3 to 1000 ug/L
(extended by dilution) | Potable Water | ICP-MS | Standard Method for
the
Examination of
Water and Wastewater
Method 3125B using
SOP 177 | |---------|--|---------------------|--------|--| | | 3 to 1000 ug/L
(extended by dilution) | Sewage Effluent | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | Mercury | 0.03 to 5 ug/L
(extended by dilution) | Sewage Effluent | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 178 | | | 0.05 to 5 ug/L
(extended by dilution) | Potable Water | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 178 | | | 0.05 to 5 ug/L (extended by dilution) | Surface Water | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 178 | | | 0.06 to 5 ug/L
(extended by dilution) | Industrial Effluent | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 178 | | | 0.08 to 5 ug/L
(extended by dilution) | Groundwater | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 178 | | Nickel | 1 to 1000 ug/L
(extended by dilution) | Groundwater | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | 1 to 1000 ug/L
(extended by dilution) | Surface Water | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | |-----------|---|---------------------|--------|---| | | 2 to 1000 ug/L
(extended by dilution) | Industrial Effluent | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | 2 to 1000 ug/L
(extended by dilution) | Potable Water | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | 2 to 1000 ug/L
(extended by dilution) | Sewage Effluent | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | Potassium | 0.1 to 100 mg/L
(extended by dilution) | Groundwater | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3120 B using
SOP 184 | | | 0.1 to 100 mg/L
(extended by dilution) | Industrial Effluent | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3120 B using
SOP 184 | | | 0.1 to 100 mg/L
(extended by dilution) | Sewage Effluent | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3120 B using
SOP 184 | | | 0.1 to 100 mg/L
(extended by dilution) | Surface Water | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3120 B using
SOP 184 | | ı | | 4.15.400 55.4 | Datable Mate | IOD MO | Ota a la a l Matha d' | |----------|----------|---|---------------------|--------|---| | | | 1 to 100 mg/L
(extended by dilution) | Potable Water | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3120 B using
SOP 184 | | | Rubidium | 1 to 1000 ug/L
(extended by dilution) | Groundwater | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | | 1 to 1000 ug/L
(extended by dilution) | Potable Water | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | | 1 to 1000 ug/L
(extended by dilution) | Sewage Effluent | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | | 24 to 1000 ug/L
(extended by dilution) | Surface Water | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | | 7 to 1000 ug/L
(extended by dilution) | Industrial Effluent | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | Selenium | 1 to 1000 ug/L
(extended by dilution) | Groundwater | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | | 1 to 1000 ug/L
(extended by dilution) | Sewage Effluent | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | 1 to 1000 ug/L
(extended by dilution) | Surface Water | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | |--------|---|---------------------|--------|--| | | 3 to 1000 ug/L
(extended by dilution) | Industrial Effluent | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | 3 to 1000 ug/L
(extended by dilution) | Potable Water | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | Silver | 0.27 to 1000 ug/L
(extended by dilution) | Sewage Effluent | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | 0.35 to 1000 ug/L
(extended by dilution) | Industrial Effluent | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | 0.42 to 1000 ug/L
(extended by dilution) | Surface Water | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | 0.60 to 1000 ug/L
(extended by dilution) | Groundwater | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | 1 to 1000 ug/L
(extended by dilution) | Potable Water | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | Sodium | 0.1 to 100 mg/L (extended by dilution) | Groundwater | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3120 B using
SOP 184 | |-----------|---|---------------------|--------|---| | | 0.2 to 100 mg/L (extended by dilution) | Surface Water | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3120 B using
SOP 184 | | | 1 to 100 mg/L
(extended by dilution) | Industrial Effluent | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3120 B using
SOP 184 | | | 1.1 to 100 mg/L (extended by dilution) | Sewage Effluent | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3120 B using
SOP 184 | | | 4.9 to 100 mg/L (extended by dilution) | Potable Water | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3120 B using
SOP 184 | | Strontium | 12 to 1000 ug/L
(extended by dilution) | Groundwater | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | 24 to 1000 ug/L
(extended by dilution) | Potable Water | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | 25 to 1000 ug/L
(extended by dilution) | Surface Water | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | | | 1 | 1 | |----------|---|---------------------|--------|--| | | 3 to 1000 ug/L
(extended by dilution) | Sewage Effluent | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | 43 to 1000 ug/L
(extended by dilution) | Industrial Effluent | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | Thallium | 1 to 1000 ug/L
(extended by dilution) | Groundwater | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | 1 to 1000 ug/L
(extended by dilution) | Industrial Effluent | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | 1 to 1000 ug/L
(extended by dilution) | Potable Water | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | 1 to 1000 ug/L
(extended by dilution) | Sewage Effluent | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | 1 to 1000 ug/L
(extended by dilution) | Surface Water | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | Tin | 1 to 1000 ug/L
(extended by dilution) | Groundwater | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | 1 to 1000 ug/L
(extended by dilution) | Industrial Effluent | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | |---------|--|---------------------|--------|--| | | 1 to 1000
ug/L
(extended by dilution) | Sewage Effluent | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | 1 to 1000 ug/L
(extended by dilution) | Surface Water | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | 3 to 1000 ug/L
(extended by dilution) | Potable Water | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | Uranium | 1 to 1000 ug/L
(extended by dilution) | Groundwater | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | 1 to 1000 ug/L
(extended by dilution) | Industrial Effluent | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | 1 to 1000 ug/L
(extended by dilution) | Potable Water | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | 1 to 1000 ug/L
(extended by dilution) | Sewage Effluent | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | 1 to 1000 ug/L
(extended by dilution) | Surface Water | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | |----------|--|---------------------|--------|--| | Vanadium | 1 to 1000 ug/L
(extended by dilution) | Groundwater | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | 1 to 1000 ug/L
(extended by dilution) | Industrial Effluent | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | 1 to 1000 ug/L
(extended by dilution) | Sewage Effluent | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | 1 to 1000 ug/L
(extended by dilution) | Surface Water | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | 3 to 1000 ug/L
(extended by dilution) | Potable Water | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | Zinc | 2 to 1000 ug/L
(extended by dilution) | Groundwater | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | 2 to 1000 ug/L
(extended by dilution) | Surface Water | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | | 20 to 1000 ug/L
(extended by dilution) | Sewage Effluent | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | |---|-----------|---|---------------------|---------|--| | | | 5 to 1000 ug/L
(extended by dilution) | Potable Water | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | | | 9 to 1000 ug/L
(extended by dilution) | Industrial Effluent | ICP-MS | Standard Method for
the Examination of
Water and Wastewater
Method 3125B using
SOP 177 | | Determination of
Metals in Soil by ICP-
OES | Arsenic | 7.0 to 350 mg/Kg | Soil | ICP-OES | Standard Method for
the examination of
Water and Wastewater
Method 3125B using
SOP 224 | | | Barium | 2.0 to 250 mg/Kg | Soil | ICP-OES | Standard Method for
the examination of
Water and Wastewater
Method 3125B using
SOP 224 | | | Beryllium | 1 to 100 mg/Kg | Soil | ICP-OES | Standard Method for
the examination of
Water and Wastewater
Method 3125B using
SOP 224 | | | Cadmium | 1 to 250 mg/Kg | Soil | ICP-OES | Standard Method for
the examination of
Water and Wastewater
Method 3125B using
SOP 224 | | | Chromium | 3 to 350 mg/Kg | Soil | ICP-OES | Standard Method for
the examination of
Water and Wastewater
Method 3125B using
SOP 224 | | Cobalt | 1 to 150 mg/Kg | Soil | ICP-OES | Standard Method for
the examination of
Water and Wastewater
Method 3125B using
SOP 224 | |-----------|----------------|------|---------|--| | Copper | 4 to 250 mg/Kg | Soil | ICP-OES | Standard Method for
the examination of
Water and Wastewater
Method 3125B using
SOP 224 | | Lead | 4 to 200 mg/Kg | Soil | ICP-OES | Standard Method for
the examination of
Water and Wastewater
Method 3125B using
SOP 224 | | Manganese | 6 to 950 mg/Kg | Soil | ICP-OES | Standard Method for
the examination of
Water and Wastewater
Method 3125B using
SOP 224 | | Nickel | 3 to 350 mg/Kg | Soil | ICP-OES | Standard Method for
the examination of
Water and Wastewater
Method 3125B using
SOP 224 | | Selenium | 2 to 150 mg/Kg | Soil | ICP-OES | Standard Method for
the examination of
Water and Wastewater
Method 3125B using
SOP 224 | | Silver | 2 to 150 mg/Kg | Soil | ICP-OES | Standard Method for
the examination of
Water and Wastewater
Method 3125B using
SOP 224 | | Strontium | 1 to 150 mg/Kg | Soil | ICP-OES | Standard Method for
the examination of
Water and Wastewater
Method 3125B using
SOP 224 | | | | THallium | 2 to 150 mg/Kg | Soil | ICP-OES | Standard Method for
the examination of
Water and Wastewater
Method 3125B using
SOP 224 | |--|--|----------|---------------------|---------------|---|---| | | | Vanadium | 2 to 150 mg/Kg | Soil | ICP-OES | Standard Method for
the examination of
Water and Wastewater
Method 3125B using
SOP 224 | | | | Zinc | 6 to 550 mg/Kg | Soil | ICP-OES | Standard Method for
the examination of
Water and Wastewater
Method 3125B using
SOP 224 | | 766 Environmental testing (inc waters)04 Organic | | | 0.009 to 0.375 ug/L | Ground Water | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Based on EPA 559 (Determination of Nonylphenol in Drinking Water) and ISO 18857:2001 (Determination of Bisphenol A) using Liquid Chromatography and Tandem Mass Spectrometry utilising online sample preparation with LC- MS\MS using SOP 606 | | | | | 0.010 to 0.375 ug/L | Surface Water | LCMSMS - HPLC
Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Based on EPA 559 (Determination of Nonylphenol in Drinking Water) and ISO 18857:2001 (Determination of Bisphenol A) using Liquid Chromatography and Tandem Mass Spectrometry utilising online sample | | | | | | | preparation with LC-
MS\MS using SOP
606 | |------------------------------|--|--|--------------------|--|---| | | | | 0.04 to 0.375 ug/L | Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Based on EPA 559 (Determination of Nonylphenol in Drinking Water) and ISO 18857:2001 (Determination of Bisphenol A) using Liquid Chromatography and Tandem Mass Spectrometry utilising online sample preparation with LC- MS\MS using SOP 606 | | Determination of Bisphenol A | | | 0.01 to 3 ug/L | Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Based on EPA 559 (Determination of Nonylphenol in Drinking Water) and ISO 18857:2001 (Determination of Bisphenol A) using Liquid Chromatography and Tandem Mass Spectrometry utilising online sample preparation with LC- MS\MS using SOP 606 | | | | | 0.01 to 3 ug/L | Mass Spec. with Mass
spectrometric
detection (MSD) in
multiple reaction mode
(MRM) | Based on EPA 559 (Determination of Nonylphenol in Drinking Water) and ISO 18857:2001 (Determination of Bisphenol A) using Liquid Chromatography and Tandem Mass | | | | | | | Spectrometry utilising online sample preparation with LC-MS\MS using SOP 606 | |--|-----------------------------|----------------------|---------------|--|---| | | | 0.01 to 3 ug/L | Surface Water | LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM) | Based on EPA 559 (Determination of Nonylphenol in Drinking Water) and ISO 18857:2001 (Determination of Bisphenol A) using Liquid Chromatography and Tandem Mass Spectrometry utilising online sample preparation with LC- MS\MS using SOP 606 | | Determination of
Organic Matter | Loss on ignition | 0.47 to 100% | Soil | Muffle furnace, drying oven, balance | USEPA method
160.4/SI No 101
of
2009 using SOP 333 | | Determination of Polyaromatic Hydrocarbons | Benzo[a]anthracene | 0.010 to 0.125 ug/L | Potable Water | GCMSMS with
TSQ9000 | Based on USEPA
Method 610
(Polynuclear Aromatic
Hydrocarbons) using
SOP 575 | | | Indeno[1,2,3-cd]
pyrene* | 0.003 to 0.125 ug/L | Potable Water | GCMSMS with
TSQ9000 | Based on USEPA Method 610 (Polynuclear Aromatic Hydrocarbons) using SOP 575 | | | Acenaphthene | 0.0025 to 0.125 ug/L | Potable Water | GCMSMS with
TSQ9000 | Based on USEPA
Method 610
(Polynuclear Aromatic
Hydrocarbons) using
SOP 575 | | | Acenaphthylene | 0.002 to 0.125 ug/L | Potable Water | GCMSMS with
TSQ9000 | Based on USEPA
Method 610
(Polynuclear Aromatic | | | | | | Hydrocarbons) using SOP 575 | |-------------------------------------|-----------------------------|---------------|------------------------|---| | Benzo[a]pyrene | 0.003 to 0.030 ug/L | Potable Water | GCMSMS with
TSQ9000 | Based on USEPA
Method 610
(Polynuclear Aromatic
Hydrocarbons) using
SOP 575 | | Benzo[b]fluoranthene* | 0.004 to 0.125 ug/L | Potable Water | GCMSMS with
TSQ9000 | Based on USEPA
Method 610
(Polynuclear Aromatic
Hydrocarbons) using
SOP 575 | | Benzo[ghi]perylene* | 0.004 to 0.125 ug/L | Potable Water | GCMSMS with
TSQ9000 | Based on USEPA
Method 610
(Polynuclear Aromatic
Hydrocarbons) using
SOP 575 | | Benzo[k]fluoranthene* | 0.004 to 0.125 ug/L | Potable Water | GCMSMS with
TSQ9000 | Based on USEPA
Method 610
(Polynuclear Aromatic
Hydrocarbons) using
SOP 575 | | Chrysene | 0.0134 to 0.125 ug/L | Potable Water | GCMSMS with
TSQ9000 | Based on USEPA
Method 610
(Polynuclear Aromatic
Hydrocarbons) using
SOP 575 | | Fluorene | 0.005 to 0.125 ug/L | Potable Water | GCMSMS with
TSQ9000 | Based on USEPA
Method 610
(Polynuclear Aromatic
Hydrocarbons) using
SOP 575 | | Pyrene | 0.004 to 0.125 ug/L | Potable Water | GCMSMS with
TSQ9000 | Based on USEPA
Method 610
(Polynuclear Aromatic
Hydrocarbons) using
SOP 575 | | Total PAH (total of those marked *) | (as calculated) to 0.5 ug/L | Potable Water | GCMSMS with
TSQ9000 | Based on USEPA
Method 610
(Polynuclear Aromatic | | | | | | | Hydrocarbons) using SOP 575 | |---|----------------|--|---|----------------------------------|--| | Determination of Total
Organic Carbon
(TOC) | Organic Carbon | 0 to 50,000 mg/L | Potable Waters,
Surface Waters,
Groundwaters,
Trade Effluents,
Sewage Effluents | Total Organic Carbon
Analyser | Based on BS EN
13137:2001 using
SOP 316 | | | | 0.3 to 50 mg/L
(extended by dilution) | Groundwater | TOC-V analyser | British Standard EN
13137:2001 using
SOP 316 | | | | 0.3 to 50 mg/L
(extended by dilution) | Groundwater | Total Organic Carbon
Analyser | Based on BS EN
13137:2001 using
SOP 316 | | | | 0.4 to 50 mg/L
(extended by dilution) | Industrial Effluent | TOC-V analyser | British Standard EN
13137:2001 using
SOP 316 | | | | 0.4 to 50 mg/L
(extended by dilution) | Industrial Effluent | Total Organic Carbon
Analyser | Based on BS EN
13137:2001 using
SOP 316 | | | | 0.6 to 50 mg/L
(extended by dilution) | Surface Water | TOC-V analyser | British Standard EN
13137:2001 using
SOP 316 | | | | 0.6 to 50 mg/L
(extended by dilution) | Surface Water | Total Organic Carbon
Analyser | Based on BS EN
13137:2001 using
SOP 316 | | | | 0.7 to 50 mg/L
(extended by dilution) | Potable Water | TOC-V analyser | British Standard EN
13137:2001 using
SOP 316 | | | | 0.7 to 50 mg/L
(extended by dilution) | Potable Water | Total Organic Carbon
Analyser | Based on BS EN
13137:2001 using
SOP 316 | | | | 1.3 to 50 mg/L
(extended by dilution) | Sewage Effluent | TOC-V analyser | British Standard EN
13137:2001 using
SOP 316 | | | | 1.3 to 50 mg/L
(extended by dilution) | Sewage Effluent | Total Organic Carbon
Analyser | Based on BS EN
13137:2001 using
SOP 316 | | Determination of TPH's | Aromatics (>C35-C40) | 7 to 2000 mg/Kg | Soil | Solvent extraction using PAL RTC and analysis by GC-FID Chromatography | Based on USEPA
Method 8015B using
SOP 572 | |---|-------------------------------|---|---------------------|--|---| | Determination of
Volatile Organic
Compounds | 1,1,1,2-
Tetrachloroethane | 0.5 to 200 ug/L
(extended by dilution) | Groundwater | Headspace GCMS | EPA Method 8260B
using SOP 154 | | | | 0.6 to 200 ug/L (extended by dilution) | Potable Water | Headspace GCMS | EPA Method 8260B using SOP 154 | | | | 1 to 200 ug/L
(extended by dilution) | Industrial Effluent | Headspace GCMS | EPA Method 8260B using SOP 154 | | | | 1 to 200 ug/L
(extended by dilution) | Surface Water | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1,1,1-Trichloroethane | 1 to 200 ug/L (extended by dilution) | Groundwater | Headspace GCMS | EPA Method 8260B using SOP 154 | | | | 1 to 200 ug/L (extended by dilution) | Industrial Effluent | Headspace GCMS | EPA Method 8260B using SOP 154 | | | | 1 to 200 ug/L
(extended by dilution) | Potable Water | Headspace GCMS | EPA Method 8260B using SOP 154 | | | | 1 to 200 ug/L
(extended by dilution) | Surface Water | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1,1,2-Trichloroethane | 1 to 200 ug/L
(extended by dilution) | Potable Water | Headspace GCMS | EPA Method 8260B
using SOP 154 | | | | 2 to 200 ug/L
(extended by dilution) | Groundwater | Headspace GCMS | EPA Method 8260B using SOP 154 | | | | 2 to 200 ug/L
(extended by dilution) | Industrial Effluent | Headspace GCMS | EPA Method 8260B using SOP 154 | | | | 2 to 200 ug/L
(extended by dilution) | Surface Water | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1,1-Dichloroethane | 1 to 200 ug/L
(extended by dilution) | Groundwater | Headspace GCMS | EPA Method 8260B using SOP 154 | | | | 1 to 200 ug/L
(extended by dilution) | Industrial Effluent | Headspace GCMS | EPA Method 8260B using SOP 154 | | | | 1 to 200 ug/L (extended by dilution) | Potable Water | Headspace GCMS | EPA Method 8260B using SOP 154 | | | | 1 to 200 ug/L
(extended by dilution) | Surface Water | Headspace GCMS | EPA Method 8260B using SOP 154 | | 1,1-Dichloroethene | 1 to 200 ug/L
(extended by dilution) | Groundwater | Headspace GCMS | EPA Method 8260B using SOP 154 | |------------------------|---|---------------------|----------------|-----------------------------------| | | 1 to 200 ug/L
(extended by dilution) | Industrial Effluent | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Potable Water | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Surface Water | Headspace GCMS | EPA Method 8260B using SOP 154 | | 1,1-Dichloropropene | 1 to 200 ug/L
(extended by dilution) | Groundwater | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Industrial Effluent | Headspace GCMS | EPA Method 8260B
using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Potable Water | Headspace GCMS | EPA Method 8260B
using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Surface Water | Headspace GCMS | EPA Method 8260B
using SOP 154 | | 1,2,3-Trichlorobenzene | 1 to 200 ug/L
(extended by dilution) | Groundwater | Headspace GCMS | EPA Method 8260B
using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Industrial Effluent | Headspace GCMS | EPA Method 8260B
using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Potable Water | Headspace GCMS | EPA Method 8260B
using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Surface Water | Headspace GCMS | EPA Method 8260B
using SOP 154 | | 1,2,3-Trichloropropane | 0.9 to 200 ug/L
(extended by dilution) | Groundwater | Headspace GCMS | EPA Method 8260B
using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Surface Water | Headspace GCMS | EPA Method 8260B
using SOP 154 | | | 2 to 200 ug/L
(extended by dilution) | Industrial Effluent | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 2 to 200 ug/L
(extended by dilution) | Potable Water | Headspace GCMS | EPA Method 8260B
using SOP 154 | | 1,2,4-Trichlorobenzene | 0.6 to 200 ug/L
(extended by dilution) | Surface Water | Headspace GCMS | EPA Method 8260B
using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Groundwater | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Industrial Effluent | Headspace GCMS | EPA Method 8260B using SOP 154 | |---------------------------------|---|---------------------|----------------|-----------------------------------| | | 1 to 200 ug/L
(extended by dilution) | Potable Water | Headspace GCMS | EPA Method 8260B using SOP 154 | | 1,2,4-
Trimethylbenzene | 1 to 200 ug/L (extended by dilution) | Groundwater | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 200 ug/L (extended by dilution) | Industrial Effluent | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Potable Water | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Surface Water | Headspace GCMS | EPA Method 8260B
using SOP 154 | | 1,2-dibromo-3-
chloropropane | 1 to 200 ug/L (extended by dilution) | Potable Water | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 200 ug/L (extended by dilution) | Surface Water | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1.0 to 200 ug/L (extended by dilution) | Groundwater | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 5.0 to 200 ug/L (extended by dilution) | Industrial Effluent | Headspace GCMS | EPA Method 8260B using SOP 154 | | 1,2-Dibromoethane | 1 to 200 ug/L (extended by dilution) | Groundwater | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Potable Water | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 200 ug/L (extended by dilution) | Surface Water | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 2 to 200 ug/L
(extended by dilution) | Industrial Effluent | Headspace GCMS | EPA Method 8260B using SOP 154 | | 1,2-Dichlorobenzene | 1 to 200 ug/L (extended by dilution) | Groundwater | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Industrial Effluent | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Potable Water | Headspace GCMS | EPA Method 8260B
using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Surface Water | Headspace GCMS | EPA Method 8260B using SOP 154 | | 1,2-Dichloroethane | 0.9 to 200 ug/L
(extended by dilution) | Potable Water | Headspace GCMS | EPA Method 8260B using SOP 154 | |----------------------------|---|---------------------|----------------|-----------------------------------| | | 1 to 200 ug/L
(extended by dilution) | Groundwater | Headspace GCMS | EPA Method 8260B
using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Industrial Effluent | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Surface Water | Headspace GCMS | EPA Method 8260B using SOP 154 | | 1,2-Dichloropropane | 1 to 200 ug/L
(extended by dilution) | Groundwater | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Industrial Effluent | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Potable Water | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Surface Water | Headspace GCMS | EPA Method 8260B using SOP 154 | | 1,3,5-
Trimethylbenzene | 1 to 200 ug/L
(extended by dilution) | Groundwater | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Industrial Effluent | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Potable Water | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Surface Water | Headspace GCMS | EPA Method 8260B using SOP 154 | | 1,3-Dichlorobenzene | 1 to 200 ug/L
(extended by dilution) | Groundwater | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Industrial Effluent | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Potable Water | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Surface Water | Headspace GCMS | EPA Method 8260B
using SOP 154 | | 1,3-Dichloropropane | 1 to 200 ug/L
(extended by dilution) | Groundwater | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Industrial Effluent | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Potable Water | Headspace GCMS | EPA Method 8260B using SOP 154 | |---------------------|---|---------------------|----------------|--------------------------------| | | 1 to 200 ug/L
(extended by dilution) | Surface Water | Headspace GCMS | EPA Method 8260B using SOP 154 | | 1,4-Dichlorobenzene | 1 to 200 ug/L (extended by dilution) | Potable Water | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 200 ug/L (extended by dilution) | Surface Water | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 2 to 200 ug/L
(extended by dilution) | Groundwater | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 2 to 200 ug/L
(extended by dilution) | Industrial Effluent | Headspace GCMS | EPA Method 8260B using SOP 154 | | 2-Chlorotoluene | 1 to 200 ug/L
(extended by dilution) | Groundwater | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 200 ug/L (extended by dilution) | Industrial Effluent | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 200 ug/L (extended by dilution) | Potable Water | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Surface Water | Headspace GCMS | EPA Method 8260B using SOP 154 | | 4-Chlorotoluene | 1 to 200 ug/L (extended by dilution) | Groundwater | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 200 ug/L (extended by dilution) | Industrial Effluent | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 200 ug/L (extended by dilution) | Potable Water | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 200 ug/L (extended by dilution) | Surface Water | Headspace GCMS | EPA Method 8260B using SOP 154 | | Benzene | 0.3 to 200 ug/L (extended by dilution) | Potable Water | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Groundwater | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Industrial Effluent | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Surface Water | Headspace GCMS | EPA Method 8260B using SOP 154 | | Bromobenzene | 1 to 200 ug/L
(extended by dilution) | Groundwater | Headspace GCMS | EPA Method 8260B using SOP 154 | |----------------------|---|---------------------|----------------|-----------------------------------| | | 1 to 200 ug/L
(extended by dilution) | Industrial Effluent | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Potable Water | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Surface Water | Headspace GCMS | EPA Method 8260B using SOP 154 | | Bromochloromethane | 1 to 200 ug/L
(extended by dilution) | Groundwater | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Industrial Effluent | Headspace GCMS | EPA Method 8260B
using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Surface Water | Headspace GCMS | EPA Method 8260B
using SOP 154 | | | 2 to 200 ug/L
(extended by dilution) | Potable Water | Headspace GCMS | EPA Method 8260B
using SOP 154 | | Bromodichloromethane | 1 to 200 ug/L
(extended by dilution) | Groundwater | Headspace GCMS | EPA Method 8260B
using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Industrial Effluent | Headspace GCMS | EPA Method 8260B
using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Surface Water | Headspace GCMS | EPA Method 8260B
using SOP 154 | | | 1.2 to 200 ug/L (extended by dilution) | Potable Water | Headspace GCMS | EPA Method 8260B
using SOP 154 | | Bromoform | 1 to 200 ug/L
(extended by dilution) | Industrial Effluent | Headspace GCMS | EPA Method 8260B
using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Surface Water | Headspace GCMS | EPA Method 8260B
using SOP 154 | | | 2 to 200 ug/L
(extended by dilution) | Groundwater | Headspace GCMS | EPA Method 8260B
using SOP 154 | | | 2.6 to 200 ug/L
(extended by dilution) | Potable Water | Headspace GCMS | EPA Method 8260B
using SOP 154 | | Carbon tetrachloride | 1 to 200 ug/L
(extended by dilution) | Groundwater | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Industrial Effluent | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Potable Water | Headspace GCMS | EPA Method 8260B using SOP 154 | |-----------------------------|---|---------------------|----------------|--------------------------------| | | 1 to 200 ug/L
(extended by dilution) | Surface Water | Headspace GCMS | EPA Method 8260B using SOP 154 | | Chlorobenzene | 1 to 200 ug/L (extended by dilution) | Groundwater | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Industrial Effluent | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Potable Water | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 200 ug/L (extended by dilution) | Surface Water | Headspace GCMS | EPA Method 8260B using SOP 154 | | Chloroform | 1 to 200 ug/L (extended by dilution) | Groundwater | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 200 ug/L (extended by dilution) | Industrial Effluent | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 200 ug/L (extended by dilution) | Surface Water | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 5.5 to 200 ug/L (extended by dilution) | Potable Water | Headspace GCMS | EPA Method 8260B using SOP 154 | | cis-1,2-Dichloroethene | 1 to 200 ug/L (extended by dilution) | Groundwater | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 200 ug/L (extended by dilution) | Industrial Effluent | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 200 ug/L (extended by dilution) | Potable Water | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Surface Water | Headspace GCMS | EPA Method 8260B using SOP 154 | |
cis-1,3-
Dichloropropene | 1 to 200 ug/L
(extended by dilution) | Groundwater | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Industrial Effluent | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 200 ug/L (extended by dilution) | Potable Water | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Surface Water | Headspace GCMS | EPA Method 8260B using SOP 154 | | Dibromochloromethane | 1 to 200 ug/L
(extended by dilution) | Groundwater | Headspace GCMS | EPA Method 8260B using SOP 154 | |----------------------|---|---------------------|----------------|--------------------------------| | | 1 to 200 ug/L
(extended by dilution) | Industrial Effluent | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Surface Water | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1.4 to 200 ug/L
(extended by dilution) | Potable Water | Headspace GCMS | EPA Method 8260B using SOP 154 | | Dibromomethane | 1 to 200 ug/L
(extended by dilution) | Groundwater | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Industrial Effluent | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Potable Water | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Surface Water | Headspace GCMS | EPA Method 8260B using SOP 154 | | Ethylbenzene | 1 to 200 ug/L (extended by dilution) | Groundwater | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Industrial Effluent | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Potable Water | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 200 ug/L (extended by dilution) | Surface Water | Headspace GCMS | EPA Method 8260B using SOP 154 | | Hexachlorobutadiene | 0.41 to 200 ug/L (extended by dilution) | Potable Water | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 200 ug/L (extended by dilution) | Groundwater | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Industrial Effluent | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Surface Water | Headspace GCMS | EPA Method 8260B using SOP 154 | | Isopropylbenzene | 1 to 200 ug/L
(extended by dilution) | Groundwater | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Industrial Effluent | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Potable Water | Headspace GCMS | EPA Method 8260B using SOP 154 | |-----------------|---|---------------------|----------------|-----------------------------------| | | 1 to 200 ug/L
(extended by dilution) | Surface Water | Headspace GCMS | EPA Method 8260B using SOP 154 | | m & p-Xylene | 1 to 200 ug/L
(extended by dilution) | Groundwater | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Industrial Effluent | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Surface Water | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 2 to 200 ug/L
(extended by dilution) | Potable Water | Headspace GCMS | EPA Method 8260B using SOP 154 | | Naphthalene | 1 to 200 ug/L
(extended by dilution) | Groundwater | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Industrial Effluent | Headspace GCMS | EPA Method 8260B
using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Potable Water | Headspace GCMS | EPA Method 8260B
using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Surface Water | Headspace GCMS | EPA Method 8260B
using SOP 154 | | n-Butylbenzene | 1 to 200 ug/L
(extended by dilution) | Groundwater | Headspace GCMS | EPA Method 8260B
using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Industrial Effluent | Headspace GCMS | EPA Method 8260B
using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Potable Water | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Surface Water | Headspace GCMS | EPA Method 8260B
using SOP 154 | | n-Propylbenzene | 1 to 200 ug/L
(extended by dilution) | Groundwater | Headspace GCMS | EPA Method 8260B
using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Industrial Effluent | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Potable Water | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1.0 to 200 ug/L (extended by dilution) | Surface Water | Headspace GCMS | EPA Method 8260B using SOP 154 | | o-Xylene | 1 to 200 ug/L
(extended by dilution) | Groundwater | Headspace GCMS | EPA Method 8260B using SOP 154 | |--------------------|---|---------------------|----------------|--------------------------------| | | 1 to 200 ug/L
(extended by dilution) | Industrial Effluent | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Potable Water | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Surface Water | Headspace GCMS | EPA Method 8260B using SOP 154 | | p-Isopropyltoluene | 1 to 200 ug/L
(extended by dilution) | Groundwater | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Industrial Effluent | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Potable Water | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Surface Water | Headspace GCMS | EPA Method 8260B using SOP 154 | | sec-Butylbenzene | 1 to 200 ug/L
(extended by dilution) | Groundwater | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Industrial Effluent | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Potable Water | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Surface Water | Headspace GCMS | EPA Method 8260B using SOP 154 | | Styrene | 1 to 200 ug/L
(extended by dilution) | Groundwater | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Industrial Effluent | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Potable Water | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Surface Water | Headspace GCMS | EPA Method 8260B using SOP 154 | | tert-Butylbenzene | 1 to 200 ug/L
(extended by dilution) | Groundwater | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Industrial Effluent | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Potable Water | Headspace GCMS | EPA Method 8260B using SOP 154 | |---|--|---------------------|----------------|-----------------------------------| | | 1 to 200 ug/L
(extended by dilution) | Surface Water | Headspace GCMS | EPA Method 8260B using SOP 154 | | Tetrachloroethene | 1 to 200 ug/L
(extended by dilution) | Groundwater | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Industrial Effluent | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Surface Water | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 2.32 to 200 ug/L (extended by dilution) | Potable Water | Headspace GCMS | EPA Method 8260B using SOP 154 | | Tetrachloroethene & Trichloroethene (Potable) | 2.32 to 200 ug/L
(extended by dilution) | Potable Water | Headspace GCMS | EPA Method 8260B
using SOP 154 | | Toluene | 1 to 200 ug/L
(extended by dilution) | Groundwater | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Industrial Effluent | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Potable Water | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Surface Water | Headspace GCMS | EPA Method 8260B using SOP 154 | | Total THM | 1 to 800 ug/L
(extended by dilution) | Groundwater | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 800 ug/L
(extended by dilution) | Industrial Effluent | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 800 ug/L
(extended by dilution) | Surface Water | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1.2 to 800 ug/L
(extended by dilution) | Potable Water | Headspace GCMS | EPA Method 8260B using SOP 154 | | trans-1,2-
Dichloroethene | 1 to 200 ug/L
(extended by dilution) | Groundwater | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Industrial Effluent | Headspace GCMS | EPA Method 8260B using SOP 154 | | | 1 to 200 ug/L
(extended by dilution) | Potable Water | Headspace GCMS | EPA Method 8260B using SOP 154 | | | <u> </u> | | | | | | |--|--------------------------------|-------------------------------|---|-------------------------------|-------------------|--| | | | | 1 to 200 ug/L (extended by dilution) | Surface Water | Headspace GCMS | EPA Method 8260B
using SOP 154 | | | |
trans-1,3-
Dichloropropene | 1 to 200 ug/L (extended by dilution) | Surface Water | Headspace GCMS | EPA Method 8260B
using SOP 154 | | | | | 2 to 200 ug/L
(extended by dilution) | Groundwater | Headspace GCMS | EPA Method 8260B
using SOP 154 | | | | | 2 to 200 ug/L
(extended by dilution) | Industrial Effluent | Headspace GCMS | EPA Method 8260B
using SOP 154 | | | | | 2 to 200 ug/L
(extended by dilution) | Potable Water | Headspace GCMS | EPA Method 8260B
using SOP 154 | | | | Trichloroethene | 0.8 to 200 ug/L
(extended by dilution) | Potable Water | Headspace GCMS | EPA Method 8260B
using SOP 154 | | | | | 1 to 200 ug/L
(extended by dilution) | Groundwater | Headspace GCMS | EPA Method 8260B using SOP 154 | | | | | 1 to 200 ug/L
(extended by dilution) | Surface Water | Headspace GCMS | EPA Method 8260B using SOP 154 | | | | Trichlorofluoromethane | 1 to 200 ug/L
(extended by dilution) | Groundwater | Headspace GCMS | EPA Method 8260B using SOP 154 | | | | | 1 to 200 ug/L (extended by dilution) | Surface Water | Headspace GCMS | EPA Method 8260B using SOP 154 | | | | | 1.0 to 200 ug/L (extended by dilution) | Potable Water | Headspace GCMS | EPA Method 8260B using SOP 154 | | | | Vinyl Chloride | 0 to 200 ug/L | Surface Water,
Groundwater | Headspace GCMS | EPA Method 8260B using SOP 154 | | | | | 1 to 200 ug/L
(extended by dilution) | Groundwater | Headspace GCMS | EPA Method 8260B using SOP 154 | | | | | 1 to 200 ug/L
(extended by dilution) | Surface Water | Headspace GCMS | EPA Method 8260B using SOP 154 | | 766 Environmental testing (inc waters)05 Inorganic | Determination of
Alkalinity | Alkalinity | 2 to 300 mg/L
(extended by dilution) | Surface Water | Discrete Analyser | Aquakem / Labmedics
procedure. ID number
ALKBpB 003 using
SOP 102 | | | | | 4 to 300 mg/L
(extended by dilution) | Groundwater | Discrete Analyser | Aquakem / Labmedics
procedure. ID number
ALKBpB 003 using
SOP 102 | | | | 4 to 300 mg/L
(extended by dilution) | Potable Water | Discrete Analyser | Aquakem / Labmedics
procedure. ID number
ALKBpB 003 using
SOP 102 | |-----------------------------|--|---|---------------------|-------------------|--| | | | 6 to 300 mg/L
(extended by dilution) | Industrial Effluent | Discrete Analyser | Aquakem / Labmedics
procedure. ID number
ALKBpB 003 using
SOP 102 | | | | 6 to 300 mg/L
(extended by dilution) | Sewage Effluent | Discrete Analyser | Aquakem / Labmedics
procedure. ID number
ALKBpB 003 using
SOP 102 | | Determination of
Ammonia | Ammonia-N, Ammonia (by calculation), Ammonium (by calculation) | 0.01 to 20 mg/L
(extended by dilution) | Surface Water | Discrete Analyser | Standard Method for
the Examination of
Water and Wastewater
F, Aquachem method
AMMDIC and SSA
Book Series: 5,
Methods of Soil
Analysis – Extraction
of Exchangeable
Ammonium and Nitrate
and Nitrite 1996 using
SOP 114 | | | | 0.02 to 20 mg/L
(extended by dilution) | Groundwater | Discrete Analyser | Standard Method for
the Examination of
Water and Wastewater
F, Aquachem method
AMMDIC and SSA
Book Series: 5,
Methods of Soil
Analysis – Extraction
of Exchangeable
Ammonium and Nitrate
and Nitrite 1996 using
SOP 114 | | | | 0.02 to 20 mg/L
(extended by dilution) | Industrial Effluent | Discrete Analyser | Standard Method for
the Examination of
Water and Wastewater
F, Aquachem method
AMMDIC and SSA
Book Series: 5, | | | | | | | | Methods of Soil Analysis – Extraction of Exchangeable Ammonium and Nitrate and Nitrite 1996 using SOP 114 | |--|--|----------------|---|-----------------|------------------------------|--| | | | | 0.04 to 20 mg/L
(extended by dilution) | Potable Water | Discrete Analyser | Standard Method for
the Examination of
Water and Wastewater
F, Aquachem method
AMMDIC and SSA
Book Series: 5,
Methods of Soil
Analysis – Extraction
of Exchangeable
Ammonium and Nitrate
and Nitrite 1996 using
SOP 114 | | | | | 0.05 to 20 mg/L
(extended by dilution) | Sewage Effluent | Discrete Analyser | Standard Method for
the Examination of
Water and Wastewater
F, Aquachem method
AMMDIC and SSA
Book Series: 5,
Methods of Soil
Analysis – Extraction
of Exchangeable
Ammonium and Nitrate
and Nitrite 1996 using
SOP 114 | | | Determination of
Available Lime in Soil | Available Lime | 0.23 to 28.75
tonne/ha | Peat | Balance, pH meter, electrode | Based on the method
of Shoemaker,
McLean and Pratt
(SMP), 1960 using
SOP 304 | | | | | 0.23 to 32.50
tonne/ha | Mineral Soils | Balance, pH meter, electrode | Based on the method
of Shoemaker,
McLean and Pratt
(SMP), 1960 using
SOP 304 | | Determination of
Available
Phosphorous in Soil | Available Phosphorous | 0.1 to 20 mg/L | Soil | Discrete Analyser | Standard Soil Analysis using Morgans P and colorimetry and using SOP 301 | |--|-----------------------|-----------------|---------------------|---|--| | Determination of
Biochemical Oxygen
Demand | Biochemical Oxygen | 2 to 10000 mg/L | Groundwater | DO meter and
electrode, water bath,
incubator or by
Automated Analyser | Standard Method for
the Examination of
Water and Wastewater
Method 5210 B and
USEPA method/EPA
NE using SOP 113 | | | | 2 to 10000 mg/L | Industrial Effluent | DO meter and
electrode, water bath,
incubator or by
Automated Analyser | Standard Method for
the Examination of
Water and Wastewater
Method 5210 B and
USEPA method/EPA
NE using SOP 113 | | | | 2 to 10000 mg/L | Potable Water | DO meter and
electrode, water bath,
incubator or by
Automated Analyser | Standard Method for
the Examination of
Water and Wastewater
Method 5210 B and
USEPA method/EPA
NE using SOP 113 | | | | 2 to 10000 mg/L | Sewage Effluent | DO meter and
electrode, water bath,
incubator or by
Automated Analyser | Standard Method for
the Examination of
Water and Wastewater
Method 5210 B and
USEPA method/EPA
NE using SOP 113 | | | | 2 to 10000 mg/L | Surface Water | DO meter and
electrode, water bath,
incubator or by
Automated Analyser | Standard Method for
the Examination of
Water and Wastewater
Method 5210 B and
USEPA method/EPA
NE using SOP 113 | | Determination of Bromate | Bromate | 0.5 to 100 ug/L | Groundwater | IC and Autosampler | EPA Method 300.1
using SOP 125 | | | | 0.5 to 100 ug/L | Surface Water | IC and Autosampler | EPA Method 300.1
using SOP 125 | | | | 2.4 to 100 ug/L | Potable Water | IC and Autosampler | EPA Method 300.1 using SOP 125 | | Determination of
Chlorate to meet
DIRECTIVE (EU)
2020/2184 | Chlorate | 0.007 to 0.500 mg/L | Surface Water | Ion Chromatography
(IC) | Based on Metrohm
Application work AW
IC UK6-0477-082021
using SOP 593 | |---|----------|---|---------------------|----------------------------|---| | | | 0.02 to 0.50 mg/L | Potable Water | Ion Chromatography
(IC) | Based on Metrohm
Application work AW
IC UK6-0477-082021
using SOP 593 | | | | 0.061 to 0.500 mg/L | Groundwater | Ion Chromatography
(IC) | Based on Metrohm
Application work AW
IC UK6-0477-082021
using SOP 593 | | Determination of Chloride | Chloride | 0.7 to 300 mg/L
(extended by dilution) | Surface Water | Discrete Analyser | Standard Method for
the Examination of
Water and Wastewater
Method 4500-CI- E
using SOP 100 | | | | 1 to 300 mg/L
(extended by dilution) | Groundwater | Discrete Analyser | Standard Method for
the Examination of
Water and Wastewater
Method 4500-CI- E
using SOP 100 | | | | 1.8 to 300 mg/L
(extended by dilution) | Potable Water | Discrete Analyser | Standard Method for
the Examination of
Water and Wastewater
Method 4500-CI- E
using SOP 100 | | | | 2 to 300 mg/L
(extended by dilution) | Sewage Effluent | Discrete Analyser | Standard Method for
the Examination of
Water and Wastewater
Method 4500-CI- E
using SOP 100 | | | | 3 to 300 mg/L
(extended by dilution) | Industrial Effluent | Discrete Analyser | Standard Method for
the Examination of
Water and Wastewater
Method 4500-CI- E
using SOP 100 | | Determination of Chlorite to meet | Chlorite | 0.001 to 0.500 mg/L | Groundwater | Ion Chromatography (IC) | Based on Metrohm
Application work AW | | DIRECTIVE (EU)
2020/2184 | | | | | IC UK6-0477-082021 using SOP 593 | |-----------------------------|-------------------|----------------------------------|---------------------|----------------------------|---| | | | 0.001 to
0.500 mg/L | Surface Water | Ion Chromatography
(IC) | Based on Metrohm
Application work AW
IC UK6-0477-082021
using SOP 593 | | | | 0.026 to 0.500 mg/L | Potable Water | Ion Chromatography (IC) | Based on Metrohm
Application work AW
IC UK6-0477-082021
using SOP 593 | | Determination of Colour | Colour (Apparent) | 10 to 200 PtCo
(Hazen Units) | Sewage Effluent | Discrete Analyser | Standard Method for
the Examination of
Water and Wastewater
Method 2120 B using
SOP 108 | | | | 11 to 200 PtCo
(Hazen Units) | Potable Water | Discrete Analyser | Standard Method for
the Examination of
Water and Wastewater
Method 2120 B using
SOP 108 | | | | 4 to 200 PtCo
(Hazen Units) | Industrial Effluent | Discrete Analyser | Standard Method for
the Examination of
Water and Wastewater
Method 2120 B using
SOP 108 | | | | 5 to 200 PtCo
(Hazen Units) | Surface Water | Discrete Analyser | Standard Method for
the Examination of
Water and Wastewater
Method 2120 B using
SOP 108 | | | | 6 to 200 PtCo
(Hazen Units) | Groundwater | Discrete Analyser | Standard Method for
the Examination of
Water and Wastewater
Method 2120 B using
SOP 108 | | | Colour (True) | 1.6 to 200 PtCo
(Hazen Units) | Surface Water | Discrete Analyser | Standard Method for
the Examination of
Water and Wastewater
Method 2120 B using
SOP 108 | | | | 8 to 200 PtCo
(Hazen Units) | Potable Water | Discrete Analyser | Standard Method for
the Examination of
Water and Wastewater
Method 2120 B using
SOP 108 | |------------------------------|----------|--|-----------------------------------|-------------------|---| | | | | Potable Waters,
Surface Waters | Discrete Analyser | Standard Method for
the Examination of
Water and Wastewater
Method 2120 B using
SOP 108 | | Determination of
Fluoride | Fluoride | 0.03 to 1 mg/L
(extended by dilution) | Surface Water | Discrete Analyser | Standard Method for
the Examination of
Water and Wastewater
1998 Method 4500 F
E and SSA Book
Series: 5 – Methods of
Soil Analysis, Calcium
Chloride Extractable
Fluorine 1996 using
SOP 115 | | | | 0.05 to 1 mg/L
(extended by dilution) | Groundwater | Discrete Analyser | Standard Method for
the Examination of
Water and Wastewater
1998 Method 4500 F
E and SSA Book
Series: 5 – Methods of
Soil Analysis, Calcium
Chloride Extractable
Fluorine 1996 using
SOP 115 | | | | 0.05 to 1 mg/L
(extended by dilution) | Industrial Effluent | Discrete Analyser | Standard Method for
the Examination of
Water and Wastewater
1998 Method 4500 F
E and SSA Book
Series: 5 – Methods of
Soil Analysis, Calcium
Chloride Extractable
Fluorine 1996 using
SOP 115 | | | | 0.05 to 1 mg/L
(extended by dilution) | Sewage Effluent | Discrete Analyser | Standard Method for the Examination of | | | | | | | Water and Wastewater
1998 Method 4500 F
E and SSA Book
Series: 5 – Methods of
Soil Analysis, Calcium
Chloride Extractable
Fluorine 1996 using
SOP 115 | |------------------------------------|---|--|---------------------|-------------------|---| | | | 0.08 to 1 mg/L
(extended by dilution) | Potable Water | Discrete Analyser | Standard Method for
the Examination of
Water and Wastewater
1998 Method 4500 F
E and SSA Book
Series: 5 – Methods of
Soil Analysis, Calcium
Chloride Extractable
Fluorine 1996 using
SOP 115 | | Determination of
Hardness CaCO3 | Total Hardness | 3 to 20 mg/L
(extended by dilution) | Industrial Effluent | Discrete Analyser | Aquakem / Labmedics
procedure: ID number
HAR001 using SOP
111 | | | | 3 to 20 mg/L
(extended by dilution) | Sewage Effluent | Discrete Analyser | Aquakem / Labmedics
procedure: ID number
HAR001 using SOP
111 | | | | 3.1 to 20 mg/L
(extended by dilution) | Groundwater | Discrete Analyser | Aquakem / Labmedics
procedure: ID number
HAR001 using SOP
111 | | | | 4 to 20 mg/L
(extended by dilution) | Surface Water | Discrete Analyser | Aquakem / Labmedics
procedure: ID number
HAR001 using SOP
111 | | | | 6 to 20 mg/L
(extended by dilution) | Potable Water | Discrete Analyser | Aquakem / Labmedics
procedure: ID number
HAR001 using SOP
111 | | | Total Phosphate as P,
Phosphate (by
calculation), | 0.03 to 4 mg/L
(extended by dilution) | Groundwater | Discrete Analyser | Standard Method for the Examination of Water and Wastewater | | | Phosphorous
Pentoxide (by
calculation) | | | | Method 4500-P E using SOP 166 | |-----------------------------|--|--|---------------------|-------------------|---| | | | 0.03 to 4 mg/L
(extended by dilution) | Surface Water | Discrete Analyser | Standard Method for
the Examination of
Water and Wastewater
Method 4500-P E
using SOP 166 | | | | 0.1 to 4 mg/L
(extended by dilution) | Sewage Effluent | Discrete Analyser | Standard Method for
the Examination of
Water and Wastewater
Method 4500-P E
using SOP 166 | | | | 0.23 to 4 mg/L
(extended by dilution) | Industrial Effluent | Discrete Analyser | Standard Method for
the Examination of
Water and Wastewater
Method 4500-P E
using SOP 166 | | Determination of
Nitrate | calculation), Nitrate (by calculation) | 0.09 to 8 mg/L
(extended by dilution) | Potable Water | Discrete Analyser | Standard Method for
the Examination of
Water and Wastewater
Method 4500-NO3 H
using SOP 103 | | | | 0.51 to 8 mg/L
(extended by dilution) | Surface Water | Discrete Analyser | Standard Method for
the Examination of
Water and Wastewater
Method 4500-NO3 H
using SOP 103 | | | | 0.67 to 8 mg/L
(extended by dilution) | Sewage Effluent | Discrete Analyser | Standard Method for
the Examination of
Water and Wastewater
Method 4500-NO3 H
using SOP 103 | | | | 1 to 8 mg/L
(extended by dilution) | Groundwater | Discrete Analyser | Standard Method for
the Examination of
Water and Wastewater
Method 4500-NO3 H
using SOP 103 | | | | 1 to 8 mg/L
(extended by dilution) | Industrial Effluent | Discrete Analyser | Standard Method for the Examination of | | | | | | | Water and Wastewater
Method 4500-NO3 H
using SOP 103 | |------------------------------|--|---|---------------------|-------------------|---| | Determination of Nitrite | Nitrite (as N), Nitrite (by calculation) | 0.006 to 0.8 mg/L
(extended by dilution) | Surface Water | Discrete Analyser | Standard Method for
the Examination of
Water and Wastewater
Method 4500-NO2- B
using SOP 118 | | | | 0.01 to 0.8 mg/L
(extended by dilution) | Groundwater | Discrete Analyser | Standard Method for
the Examination of
Water and Wastewater
Method 4500-NO2- B
using SOP 118 | | | | 0.026 to 0.8 mg/L (extended by dilution) | Industrial Effluent | Discrete Analyser | Standard Method for
the Examination of
Water and Wastewater
Method 4500-NO2- B
using SOP 118 | | | | 0.03 to 0.8 mg/L (extended by dilution) | Potable Water | Discrete Analyser | Standard Method for
the Examination of
Water and Wastewater
Method 4500-NO2- B
using SOP 118 | | | | 0.05 to 0.8 mg/L (extended by dilution) | Sewage Effluent | Discrete Analyser | Standard Method for
the Examination of
Water and Wastewater
Method 4500-NO2- B
using SOP 118 | | Determination of
Nitrogen | Total Oxidised
Nitrogen (TON) as N | 0.24 to 8 mg/L
(extended by dilution) | Surface Water | Discrete Analyser | Standard Method for
the Examination of
Water and Wastewater
Method 4500-NO3 H
and SSA Book Series:
5, Methods of Soil
Analysis – Extraction
of Exchangeable
Ammonium and Nitrate
and Nitrite 1996 using
SOP 151 | | | | 0.27 to 8 mg/L (extended by dilution) | Potable Water | Discrete Analyser | Standard Method for the Examination of | | | | | Water and Wastewater
Method 4500-NO3 H
and SSA Book Series:
5, Methods of Soil
Analysis – Extraction
of Exchangeable
Ammonium and Nitrate
and Nitrite 1996 using
SOP 151 | |--|---------------------|-------------------|---| | 0.29 to 8 mg/L
(extended by dilution) | Groundwater | Discrete Analyser | Standard Method for
the Examination of
Water and Wastewater
Method 4500-NO3 H
and SSA Book Series:
5, Methods of Soil
Analysis – Extraction
of Exchangeable
Ammonium and Nitrate
and Nitrite 1996 using
SOP 151 | | 0.39 to 8 mg/L
(extended by dilution) | Industrial Effluent | Discrete Analyser | Standard Method
for
the Examination of
Water and Wastewater
Method 4500-NO3 H
and SSA Book Series:
5, Methods of Soil
Analysis – Extraction
of Exchangeable
Ammonium and Nitrate
and Nitrite 1996 using
SOP 151 | | 0.67 to 8 mg/L
(extended by dilution) | Sewage Effluent | Discrete Analyser | Standard Method for
the Examination of
Water and Wastewater
Method 4500-NO3 H
and SSA Book Series:
5, Methods of Soil
Analysis – Extraction
of Exchangeable
Ammonium and Nitrate
and Nitrite 1996 using
SOP 151 | | Determination of Orthophosphate as P | | 0.01 to 4 mg/L
(extended by dilution) | Groundwater | Discrete Analyser | Standard Method for
the Examination of
Water and Wastewater
Method 4500-P E
using SOP 117 | |--------------------------------------|--|--|---------------------|-----------------------------------|---| | | | 0.01 to 4 mg/L
(extended by dilution) | Industrial Effluent | Discrete Analyser | Standard Method for
the Examination of
Water and Wastewater
Method 4500-P E
using SOP 117 | | | | | Potable Water | Discrete Analyser | Standard Method for
the Examination of
Water and Wastewater
Method 4500-P E
using SOP 117 | | | | | Surface Water | Discrete Analyser | Standard Method for
the Examination of
Water and Wastewater
Method 4500-P E
using SOP 117 | | | | 0.03 to 4 mg/L
(extended by dilution) | Sewage Effluent | Discrete Analyser | Standard Method for
the Examination of
Water and Wastewater
Method 4500-P E
using SOP 117 | | Determination of COD Oxygen | | 3 to 1500 mg/L
(extended by dilution) | Groundwater | COD Reactor,
spectrophotometer | Standard Method for
the Examination of
Water and Wastewater
Method 5220 D using
SOP 107 | | | | 5 to 1500 mg/L
(extended by dilution) | Industrial Effluent | COD Reactor,
spectrophotometer | Standard Method for
the Examination of
Water and Wastewater
Method 5220 D using
SOP 107 | | | | 5 to 1500 mg/L
(extended by dilution) | Surface Water | COD Reactor,
spectrophotometer | Standard Method for
the Examination of
Water and Wastewater
Method 5220 D using
SOP 107 | | Determination of Phosphate | Total Phosphate as P,
Phosphate (by
calculation),
Phosphorous
Pentoxide (by
calculation) | 0.05 to 4 mg/L
(extended by dilution) | Potable Water | Discrete Analyser | Standard Method for
the Examination of
Water and Wastewater
Method 4500-P E
using SOP 166 | |------------------------------|---|---|---------------------|-------------------|---| | Determination of Silica | Silica | 0.2 to 20 mg/L
(extended by dilution) | Sewage Effluent | Discrete Analyser | Standard Method for
the Examination of
Water and Wastewater
Method 4500-SiO2 C
using SOP 152 | | | | 0.26 to 20 mg/L
(extended by dilution) | Surface Water | Discrete Analyser | Standard Method for
the Examination of
Water and Wastewater
Method 4500-SiO2 C
using SOP 152 | | | | 0.3 to 20 mg/L
(extended by dilution) | Groundwater | Discrete Analyser | Standard Method for
the Examination of
Water and Wastewater
Method 4500-SiO2 C
using SOP 152 | | | | 0.3 to 20 mg/L
(extended by dilution) | Industrial Effluent | Discrete Analyser | Standard Method for
the Examination of
Water and Wastewater
Method 4500-SiO2 C
using SOP 152 | | | | 1.1 to 20 mg/L
(extended by dilution) | Potable Water | Discrete Analyser | Standard Method for
the Examination of
Water and Wastewater
Method 4500-SiO2 C
using SOP 152 | | Determination of
Sulphate | Sulphate (SO4) | 1 to 300 mg/L
(extended by dilution) | Groundwater | Discrete Analyser | Standard Method for
the Examination of
Water and Wastewater
Method 4500-SO42- E
and SSA Book Series:
5 – Methods of Soil
Analysis, Extraction of
Sulphur 1996 using
SOP 119 | | | | 1 to 300 mg/L
(extended by dilution) | | Discrete Analyser | Standard Method for
the Examination of
Water and Wastewater
Method 4500-SO42- E
and SSA Book Series:
5 – Methods of Soil
Analysis, Extraction of
Sulphur 1996 using
SOP 119 | |--|----------|---|---------------------|---------------------------------------|---| | | | 1 to 300 mg/L
(extended by dilution) | Surface Water | Discrete Analyser | Standard Method for
the Examination of
Water and Wastewater
Method 4500-SO42- E
and SSA Book Series:
5 – Methods of Soil
Analysis, Extraction of
Sulphur 1996 using
SOP 119 | | | | 4 to 300 mg/L
(extended by dilution) | Sewage Effluent | Discrete Analyser | Standard Method for
the Examination of
Water and Wastewater
Method 4500-SO42- E
and SSA Book Series:
5 – Methods of Soil
Analysis, Extraction of
Sulphur 1996 using
SOP 119 | | | | 5 to 300 mg/L
(extended by dilution) | Potable Water | Discrete Analyser | Standard Method for
the Examination of
Water and Wastewater
Method 4500-SO42- E
and SSA Book Series:
5 – Methods of Soil
Analysis, Extraction of
Sulphur 1996 using
SOP 119 | | Determination of Tota
Kjeldahl Nitrogen | Nitrogen | 1 to 100 mg/L TKN | Industrial Effluent | Digestor, scrubber, distillation unit | Standard Method for
the Examination of
Water and Wastewater
Method 4500-Norg
using SOP 104 | | Determination of Total
Nitrogen | | 0 to 30 mg/L Total
Nitrogen as N | Potable Waters,
Surface Waters,
Groundwaters,
Trade Effluents,
Sewage Effluents | Total Nitrogen
Analyser | Based on ASTM
D8083 - 16 using SOP
547 | |------------------------------------|-----------|---|---|----------------------------|--| | | | 0.1 to 30 mg/L as N as N (extended by dilution) | Industrial Effluent | Total Nitrogen
Analyser | Based on ASTM
D8083 - 16 using SOP
547 | | | | | Surface Water | Total Nitrogen
Analyser | Based on ASTM
D8083 - 16 using SOP
547 | | | | | Groundwater | Total Nitrogen
Analyser | Based on ASTM
D8083 - 16 using SOP
547 | | | | 0.2 to 30 mg/L as N as N (extended by dilution) | Sewage Effluent | Total Nitrogen
Analyser | Based on ASTM
D8083 - 16 using SOP
547 | | | | 0.3 to 30 mg/L as N (extended by dilution) | Potable Water | Total Nitrogen
Analyser | Based on ASTM
D8083 - 16 using SOP
547 | | Determination of
Turbidity | Turbidity | 0.1 to 1000 NTU | Groundwater | Turbidimeter | Standard Method for
the Examination of
Water and Wastewater
2130 A/B and WTW
Turb 355IR/T
Instruction manual
using SOP 109 | | | | 0.1 to 1000 NTU | Industrial Effluent | Turbidimeter | Standard Method for
the Examination of
Water and Wastewater
2130 A/B and WTW
Turb 355IR/T
Instruction manual
using SOP 109 | | | | 0.1 to 1000 NTU | Potable Water | Turbidimeter | Standard Method for
the Examination of
Water and Wastewater
2130 A/B and WTW
Turb 355IR/T | | | | | | | | Instruction manual using SOP 109 | |------------------------------------|--|------------------|------------------|--|--|--| | | | 0.1 to 1000 NTU | Sewage Effluent | Turbidimeter | Standard Method for
the Examination of
Water and Wastewater
2130 A/B and WTW
Turb 355IR/T
Instruction manual
using SOP 109 | | | | | 0.1 to 1000 NTU | Surface Water | Turbidimeter | Standard Method for
the Examination of
Water and Wastewater
2130 A/B and WTW
Turb 355IR/T
Instruction manual
using SOP 109 | | | 767 Physical test/measurement01 pH | | pН | 4 to 10 pH units | Groundwater | pH meter, electrode or
by Automated
Analyser | Standard Method for
the Examination of
Water and Wastewater
Method 4500 - H+ B
using SOP 110 | | | | | 4 to 10 pH units | Industrial Effluent | by Automated
Analyser | Standard Method for
the Examination of
Water and Wastewater
Method 4500 - H+ B
using SOP 110 | | | | 4 to 10 pH units | Potable Water | pH meter, electrode or
by Automated
Analyser | Standard Method for
the Examination of
Water and Wastewater
Method 4500 - H+ B
using SOP 110 | | | | | 4 to 10 pH units | Sewage Effluent | pH meter, electrode or
by Automated
Analyser | Standard Method for
the Examination of
Water and Wastewater
Method 4500 - H+ B
using SOP 110 | | | | | 4 to 10 pH units | Surface Water | pH meter, electrode or
by Automated
Analyser | Standard Method for
the Examination of
Water and Wastewater
Method 4500 - H+ B
using SOP 110 | | | | Determination of pH in Soil | | 4 to 13 pH units | Soil | pH meter, electrode | Department of
Agriculture and Food
guidelines Nov,
2004
using SOP 300 | |--|--------------------------------------|----------------------|----------------------|--|---|---| | 767 Physical test/measurement02 Conductivity Determination of Conductivity | | Conductivity | 2 to 20000 us/cm-1 | Groundwater | Conductivity meter, electrode or by Automated Analyser | Standard Method for
the Examination of
Water and Wastewater
Method 2510 B using
SOP 112 | | | | 2.2 to 20000 us/cm-1 | Surface Water | Conductivity meter,
electrode or by
Automated Analyser | Standard Method for
the Examination of
Water and Wastewater
Method 2510 B using
SOP 112 | | | | | | 33 to 20000 us/cm-1 | Industrial Effluent | Conductivity meter,
electrode or by
Automated Analyser | Standard Method for
the Examination of
Water and Wastewater
Method 2510 B using
SOP 112 | | | | | 36 to 20000 us/cm-1 | Sewage Effluent | Conductivity meter, electrode or by Automated Analyser | Standard Method for
the Examination of
Water and Wastewater
Method 2510 B using
SOP 112 | | | | | 7.4 to 20000 us/cm-1 | Potable Water | Conductivity meter,
electrode or by
Automated Analyser | Standard Method for
the Examination of
Water and Wastewater
Method 2510 B using
SOP 112 | | 767 Physical test/measurement03 Suspended Solids | Determination of
Suspended Solids | Suspended Solids | 2 to 1000 mg/L | Industrial Effluent | Drying oven, balance | Standard Method for
the Examination of
Water and Wastewater
Method 2540 D and
EPA method 160.2 for
Gravimetric analysis
using SOP 106 |