Schedule of Accreditation Organisation Name Marine Institute Trading As INAB Reg No 130T Contact Name Yvonne Bogan Address Marine Environment & Food Safety Services Division, Rinville, Oranmore, Galway Contact Phone No 091 387566 Email yvonne.bogan@marine.ie Website http://www.marine.ie Accreditation Standard EN ISO/IEC 17025 T Standard Version 2017 Date of award of accreditation 01/07/2002 Scope Classification Biological and veterinary testing Scope Classification Chemical testing Services available to the public¹ No ¹ Refer to document on interpreting INAB Scopes of Accreditation | Sites from which accredited services are delivered | | | | | | | | |--|---------|--|--|--|--|--|--| | (the detail of the accredited services delivered at each site are on the Scope of Accreditation) | | | | | | | | | | | | | | | | | | Name Address | | | | | | | | | Name | Address | | | | | | | # Scope of Accreditation ### **Marine Institute Headquarters** #### **Biological and Veterinary Testing** Category: A | Biology/veterinary field -
Tests | Test name | Technique | Matrix | Equipment | Std. reference | | |--|---|---|--------------------|--|---|--| | 802 Preparation of films on slides followed by microscopic examination with or without fixation and staining with dyes as required02 Microscopic examination for parasites | FHU-106 Monitoring
for Gyrodactylus
salaris | Microscopic
identification of
proteinase-K digested
gyrodactylid parasites,
removed from finfish
fins. Range:
present/absent | Fish | Binocular Stereo
dissection
microscope
Light microscope | Laboratory SOP FHU-
106. Based on OIE
Manual of Diagnostic
Tests for Aquatic
Animals Chapter 2.3.3,
in accordance with
Commission
Implementing decision
(EU) 2021/60 | | | microscopic examination with or without fixation and | histology from Ostrea
edulis for the | Preparation of stained histological slides and screening of slides for the presence or absence of the protistan parasite Marteilia refringens the causative agent of Marteiliosis (Aber disease) in the flat oyster Ostrea edulis | Molluscs (Oysters) | microscope, tissue processor, slide | Laboratory SOP FHU-
95 and FHU-86. Based
on methods laid down
in EURL diagnostic
manuals and
procedures. and in the
OIE Manual of
Diagnostic Tests for
Aquatic Animals in
accordance with
Commission delegated
Regulation (EU)
2020/689 | | | | FHU-125 Diagnosis of
Perkinsus sp. in
molluscs by
histopathology | Preparation of stained
histological slides and
screening of slides for
the presence or
absence of Perkinsus
sp. parasites, the
causative agents of
Perkinsosis in
molluscs | Molluscs | Binocular
microscope, tissue
processor,
embedding centre,
microtome, slide
stainer and
automated
coverslipper | Laboratory SOP FHU-
125 and FHU-128 | | |--|---|--|------------------------------|--|--|--| | | FHU-126 Diagnosis of
Mikrocytos sp. in
molluscs by
histopathology | Preparation of stained
histological slides and
screening of slides for
the presence or
absence of Mikrocytos
sp. parasites, in
molluscs | Molluscs | Binocular
microscope, tissue
processor,
embedding centre,
microtome, slide
stainer and
automated
coverslipper | Laboratory SOP FHU-
126 and FHU-128 | | | 803 Culture of organisms in liquid or agar based culture media with visual or instrument monitoring for growth01 Culture of bacteria | MIC-006 Escherichia
coli Enumeration in
Molluscan Bivalve
Shellfish | Most probable number
test for enumeration of
Escherichia coli in
Molluscan Bivalve
Shellfish | | for enumeration of
Escherichia coli | Laboratory SOP MIC-
06. Based on ISO
16649-3 Microbiology
of food and
foodstuffs – Horizontal
method for the
enumeration
of β glucuronidase-
positive
Esherichia coli – Part
3.
Most probable number
techniques using 5-
bromo-4-
chloro-3-inddolyl- β-
Dglucuronide. | | | 805 Detection and/or identification of bacterial, parasite, fungal and viral nucleic acids using appropriate techniques03 Nucleic acid amplification tests, CE marked commercial systems | MBU-004 Detection of
norovirus genogroups
I and II bivalve
shellfish | Detection of norovirus genogroups I and II bivalve shellfish by real-time reverse transcription polymerase chain reaction (RT- PCR Instrument). Range: 100 to 2 X 10^7 genome copies/g of | Fish, shellfish and molluscs | Real-Time PCR Instrument | Laboratory SOP MBU-
4. Based on ISO
15216-1:2017 | | | T | | | | | | 1 | | |------------------|---|---|---|------------------------------------|------------|---|--| | | | | shellfish
hepatopancreas tissue | | | | | | | | MBU-110 Detection of
hepatitis A virus
bivalve shellfish | Detection of hepatitis
A virus in bivalve
shellfish by real-time
reverse transcription
polymerase chain
reaction (RT- PCR).
Range: Detected/ Not
detected. | Fish, shellfish and molluscs | | laboratory SOP MBU-
110. Based on ISO
15216-2:2019. | | | i
F
r
a | dentification of bacterial,
parasite, fungal and viral | MBU-067 Detection of
Infectious Salmon
Anaemia in Salmonid
Fish Tissue | Detection of Infectious
Salmon Anaemia virus
in Salmonid Tissue by
real-time PCR. Range:
positive/negative | Fish | Instrument | Laboratory SOP MBU-
67. Based on method
outlined in Snow et al.,
2006. Developments in
Biologicals (Basel)
126, 133-145 and
EURL diagnostic
manuals and
procedures in
accordance with
commission delegated
Regulation (EU)
2020/689 | | | | | MBU-125 Detection of
specified DNA-based
pathogens using real-
time Probe-based
PCR (rtPCR) | Koi Herpesvirus (KHV Renibacterium salmoninarum (BKD) Gyrodactylus salaris Ostreid herpes virus 1 (OsHV-1) Whitespot syndrome virus (WSSV) Mareilia refringens Bonamia ostreae and Bonamia exitiosa Detection by real-time Probe-based PCR (rtPCR). Range: positive/negative | FinFish,
Shellfish,
Molluscs | | Laboratory SOP MBU-
125 based on EURL
finfish, Molluscan and
Crustacea diagnostic
manuals; WOAH (OIE)
Diagnostic manuals.
Regulation (EU)
2016/429, Commission
Delegated Regulation
(EU) 2020/689,
Commission
Implementing Decision
(EU) 2021/260 | | | | MBU-126 Genotyping of Specified Pathogen Isolates using a DNA Sequence Comparison Technique | Koi Herpesvirus (KHV Whitespot syndrome virus (WSSV) Infectious Salmon Anaemia virus (ISAV) Secondary confirmation by conventional PCR (cPCR), and DNA sequence comparison techniques (BIASTn, Phylogenetic analysis) . Range: Positive or Negative (WSSV). Genotype Identification for KHV or ISAV. This is following a positive result using MBU-125 (WSSV/KHV) or MBU-67 (ISAV) | FinFish,
Shellfish,
Molluscs | (cPCR) instrument | Laboratory SOP MBU- 126 based on EURL finfish, Molluscan and Crustacea diagnostic manuals; WOAH (OIE) Diagnostic manuals. Regulation (EU) 2016/429, Commission Delegated Regulation (EU) 2020/689, Commission Implementing Decision (EU) 2021/260 | | |--|---|--|------------------------------------|--------------------------------------|---|--| | 810 Culture of virus and other obligate intracellular pathogens using in vivo or in vitro techniques | FHU-065 Virological examintaion of samples for the presence of Viral Haemorrhagic Septicaemia (VHS), Infectious Haematopoietic Necrosis (IHN), Infectious Pancreatic Necrosis (IPN) and Spring Viraemia of Carp (SVC) in Finfish. | Screening Finish for
VHSV, IHNV, IPNV
and SVCV by cell
culture. Range:
positive/negative | Fish | Microscope,
ELISA Plate
Reader | Laboratory SOP FHU-
65. Based on
Commission delegated
Regulation (EU)
2020/689 and EURL
diagnostics manuals
and procedures and
the OIE Manual of
Diagnostic Tests for
Aquatic Animals
Chapter 2.3.5, 2.3.9,
2.3.10 | | | 820 Miscellaneous | FHU-086 and FHU-
087 Preparation and
Screening of heart
imprints from Ostrea
edulis for the presence
of Bonamia ostreae
and Bonamia exitiosa | Histological and microscopic preparation and examination of slides | Molluscs (Oysters) | downdraft,
fumehood | Laboratory SOP FHU-
87 and FHU-86. Based
on methods laid down
in EURL diagnostic
manuals and
procedures and in the
OIE Manual of | | | | | | | Diagnostic Tests for
Aquatic Animals in
accordance with
Commission delegated
regulation (EU)
2020/689 | | |--|---|---|---|--|--| | PHY-009 Phytoplankton Test Identification and enumeration of Phytoplankton | Phytoplankton Test Identification and enumeration of Phytoplankton by the Utermöhl Cell Counting Method Range: 40 cells/l upwards (see appendix 1 for details list) | Biota: Species list: Toxic species – PSP Toxin Producers (Saxitoxins) (Also linked to fish mortalities) Alexandrium tamarense Alexandrium minutum Alexandrium spp. Alexandrium cysts Toxic species – DSP Toxin Producers (Okadaic acid, DTX's, Pectenotoxins) Dinophysis acuminata Dinophysis acuta Dinophysis dens Dinophysis dens Dinophysis fortii Dinophysis miles Dinophysis mitra Dinophysis mitra Dinophysis nasutum Dinophysis nasutum Dinophysis ovum Dinophysis parva Dinophysis parva Dinophysis rotundata Dinophysis rotundata Dinophysis rotundata Dinophysis rotundata Dinophysis rotundata Dinophysis sacculus | Utermöhl Cell counting method using Inverted light microscope | Laboratory SOP PHY- 9. Based on EN15204:2007 and EU Directive 853/2004. | | | | Dinophysis tripos Dinophysis sp. Prorocentrum lima Prorocentrum minimum/balticum Phalacroma rapa Phalacroma spp. Toxic species ASP Toxin Producers (Domoic Acid) Pseudo-nitzschia delicatissima group <3 µm Pseudo-nitzschia seriata group >3 µm Toxic species Yessotoxins, Homo- yessotoxin producers Lingulodinium polyedrum Protoceratium reticulatum Gonyaulax spinifera Dinophysis sacculus Dinophysis tripos Dinophysis sp. Prorocentrum lima Prorocentrum minimum/balticum Phalacroma rapa Phalacroma spp. | | | |--|---|--|--| | | | | | # **Marine Institute Headquarters** # **Chemical Testing** Category: A | Chemistry Field -
Tests | Test name | Analyte | Range of measurement | Matrix | Equipment/technique | Standard reference/SOP | |---|--|--|---|---|--|--| | 751 Food testing03
Compositional analysis | CHE-052
Determination of
Moisture content in
Marine Biota | Moisture | Range: Moisture
Content: 2.0%-90% | Fish, Shellfish
and molluscs
(marine biota) | Moisture content by oven determination | Laboratory SOP CHE-
52. Based on the
AOAC official method
for moisture in Meat,
official methods of
analysis of AOAC
International. | | 752 Chemical residue testing01 Drugs and drug metabolites | CHE-220 Analysis of Antibiotics by LCMSMS (Confirmatory method : Qualitative & Quantitative Analysis - finfish) Qualitative Screening method – crustaceans | QUINOLONES(Q) Ciprofloxacin(Q1) Danofloxacin(Q2) Difloxacin(Q3) Enrofloxacin(Q4) Flumequine(Q5) Marbofloxacin(Q6) Nalidixic acid(Q7) Norfloxacin(Q8) Oxolinic acid(Q9) Sarafloxacin(Q10) SULPHONAMIDES(S) Sulfachloropyridazine(S1) Sulfadiazine(S2) Sulfadimethoxine(S3) Sulfadoxine(S4) Sulfaguanidine(S5) Sulfamerazine(S6) Sulfamethizole(S8) Sulfamethoxazole(S9) Sulfamethoxypyridazine(S10) Sulfamonomethoxine(S11) Sulfapyridine(S12) Sulfaquinoxaline(S13) Sulfathiazole(S14) | QUANTITATIVE RANGE (A): (Q1, Q4) 10-400µg/kg, (Q2, Q6, Q9) 10- 800µg/kg, (Q7, Q8) 5-800µg/kg, (Q3) 30-2400µg/kg, (Q5) 60-4800µg/kg, (Q10) 3-240µg/kg, (T1, T2, T5, T6, T7, T8) 5-400µg/kg, (T3, T4) 20- 800µg/kg. (All: S1- S25) 10-800µg/kg. (O1) 5-400µg/kg, (O2) 0.25-40µg/kg. QUALITATIVE RANGE (A, B): (Q1, Q4) 10µg/kg, (Q2, Q6, Q7, Q8, Q9) 15µg/kg, (Q3) 30µg/kg, (Q5) 60µg/kg, (Q10) 3µg/kg, (T1, T2, T5, T6, T7, T8) 10µg/kg, (T3, T4) 10µg/kg, | (A) Fin-fish matrices, skin and muscle in natural proportions, (B) Prawn matrices | LCMSMS (Liquid
Chromatography Mass
Spectrometry) | Laboratory SOP CHE- 220. The development and validation of a multiclass LC_MS/MS procedure for the determination of veterinary drug residues in animal tissue using a QUECHERS approach. Analytica Chimica Acta 637 (2009),68-78 | | | CHE-233 Analysis of
Dyes by Thermo
LCMSMS | Sulfisomidine(S19) Sulfatroxazole(S20) Sulfachloropyrazine(S21) Sulfaethoxypyrazine(S22) Sulfasalazine(S23) Sulfabenzamide(S24) Sulfaphenazole(S25) TETRACYCLINES(T) Chlortetracycline(T1) Demeclocycline(T2) Doxycycline(T3) 4-epi-Chlortetracycline(T4) 4-epi-Oxytetracycline(T5) 4-epi-Tetracycline(T7) Tetracycline(T8) OTHER(O) Trimethoprim(O1) Dapsone(O2) Malachite green, Crystal Violet, Victoria Blue, Leuco | (All: S1-S25) 10µg/kg. (O1) 5µg/kg, (O2) 0.5µg/kg. Confirmatory method: Qualitative & Quantitative Analysis | Finfish muscle
and skin in
natural
proportions | , | Based on the Journal of
Chromatography/A/2011
Vol 1218, NUMB 12, | |---|---|---|--|---|---|--| | | | S. Cooli | Quantitative Range: 0.2- 8 µg/kg Qualitative Range: determination at lowest calibration level 0.20 µg/kg | | | pages 1632-1645 with adaptions | | 752 Chemical residue testing02 Elements | CHE-032 Screening
and Confirmatory
Chemical test
Mercury | Mercury | Range: 0.007-50
mg.kg-1 wet weight | Fish, Shellfish
and molluscs
(marine biota) | | Laboratory SOP CHE-
32 Digestion Method.
Based on Hatch and
Ott, 1968. Analytical
method for
determination of total
mercury based on | | No. of the last | | | 1 | | | | |--|---|------------------------------|--|--|--|--| | | | | | | | manufacturers
recommendations (PS
Analytical). | | 752 Chemical residue testing04 Pesticide residues | CHE-215 Quantitative Screening Analysis of Cypermethrin and Deltamethrin in farmed finfish | Analysis of Cypermethrin and | Cypermethrin 25-
400 ug/kg.
Deltamethrin 5-80
ug/kg | Finfish- muscle
and skin in
natural
proportions | Gas Chromatography
Mass Spectrometry | Laboratory SOP CHE215 Based on Roscoe, Veronica, Judge, Judy, Rawn, Dorothea F.K., "Application of the QuEChERS Extraction Method for the Analysis of Pyrethrin and Pyrethroid Pesticides in Fin and non-Fin Fish | | 766 Environmental testing (inc waters)05 Inorganic | CHE-141 Salinity
analysis in Sea and
Estuarine Water | Salinity | Range: 0.03 (i.e.
LOQ) - 37.999 psu | Saline Waters | Portasal Salinometer
TM8410A and Autosal
Salinometer 8400B | Laboratory SOP CHE-
141. Based in Technical
Manual for Portasal
Salinometer and Autosal
Salinometer. | | 797 Miscellaneous
materials and products -
.03 Other tests | BCT-078 Analysis of
Lipophilic toxins,
including semi
quantitative screen
for Domoic Acid | Yessotoxin, Domoic Acid | Range: OA Equivalents 0.015-13.21 µg/g AZA Equivalents: Range 0.005-7.5 µg/g Yessotoxin Equivalents: Range 0.2-2.39 µg/g Semi Quantitative Screen: Domoic Acid by LC-MS/MS: Range 2.0 -113 mg.kg-1 | Fish, shellfish and molluscs | UPLC MSMS | Laboratory SOP BCT-78. Based on Gerssen,P.P.J. Mulder, M.A. McElhinney, J. de Boer, 2009. Journal of Chromatography A, 1216, 9, 1421 - 1430 and the EU Reference method for lipophilic toxin analysis (EU-RL LCMSMS) | | | BCT-088 Chemical
Confirmatory Test:
Domoic and Epi-
Domoic Acid
analysis | | Range Domoic and
Epi-Domoic acid:
0.8 – 2500 mg.kg-1 | Fish, shellfish
and molluscs.
Shellfish: All
Tissue | UHPLC DAD | Laboratory SOP BCT-
88. Based on the
international procedure
by Quilliam et al.1995
used and recommended
by the European
Reference Laboratory
for Marine Biotoxins
(EURLMB). | | | BCT-096 Analysis of
Biotoxins in Shellfish | Okadaic Acid, AZA,
Yessotoxin, Domic Acid | OA Equivalents: Range 0.015 – 4.5 µg/g AZA Equivalents: Range 0.005 – 4.3 µg/g Yessotoxin Equivalence: Range 0.03 – 6.2 µg/g Semi Quantitative Screen: Domoic | | | Laboratory SOP BCT-
96. Based on the EU
Reference method for
lipophilic toxin analysis
(EU-RL LC/MS-MS) | | |--|---|--|---|---|---------------------------------|---|--| | | | Shellfish Toxins by pre-column | STX, dcSTX, GTX2,3, GTX5, dcGTX2,3, C1,2, NEO, GTX1,4, dcNEO, GTX6 & C3,4. | Acid: Range $0.7-53.8 \text{ mg.kg-1}$ Range: Toxin Range (LOQ-ULQ) Units: μg STX diHCLeq-kg STX, $34 \rightarrow 2263$ dcSTX, $17 \rightarrow 1459$ GTX2,3, $26 \rightarrow 3359$ GTX5, $2 \rightarrow 155$ dcGTX2,3, $14 \rightarrow 1405$ C1,2, $4 \rightarrow 509$ NEO, $145 \rightarrow 4481$ GTX1,4, $245 \rightarrow 3984$ dcNEO, $25 \rightarrow 1513$ GTX6, $8 \rightarrow 946$ C3,4, $8 \rightarrow 553$ | Fish, shellfish and molluscs | Chromatography with | Lawrence JF,
Niedzwiadek B, Menard
C "AOAC Official
Method 2005.06 | | | | Lipophilic toxins by LC-MS/MS XEVO | | Range: OA Equivalents; 0.01-16.0 µg/g AZA Equivalents: 0.005-14.9 µg/g Yessotoxin Equivalents; 0.5-37 µg/g Semi Quantitative Domoic Acid Screen; 0.7 to 113 mg/kg. | Fish, shellfish
and molluscs | | Laboratory SOP BCT-
107. Based on the EU
Reference method for
lipophilic toxin analysis
(EU-RL LC/MS-MS) |