Schedule of Accreditation Organisation Name Saotharlann Chonamara Teo Trading As Complete laboratory solutions 108T **INAB** Reg No Sharon Deeney Curran Contact Name Address Rosmuc, Connemara, Galway Contact Phone No 091-574355 Email sdcurran@cls.ie Website Accreditation Standard **EN ISO/IEC 17025 T** Standard Version 2017 Date of award of accreditation 15/09/1999 Scope Classification Biological and veterinary testing Scope Classification Chemical testing Services available to the public¹ Yes ¹ Refer to document on interpreting INAB Scopes of Accreditation | Sites from which accredited services are delivered | | | | | | | |--|-------------|---------------------------|--|--|--|--| | (the detail of the accredited services delivered at each site are on the Scope of Accreditation) | | | | | | | | Name Address | | | | | | | | 1 | Head Office | Rosmuc, Connemara, Galway | | | | | | 2 CLS Galway UNIT 2, 3 and 8, IDA Enterprise Park,, Tuam Road, Galway | | | | | | | # Scope of Accreditation #### **CLS Galway** #### **Biological and Veterinary Testing** | Biology/veterinary field - Tests | Test name | Technique | Matrix | Equipment | Std. reference | | |---|---|---|---|-----------|--|--| | 803 Culture of organisms in
liquid or agar based culture
media with visual or
instrument monitoring for
growth01 Culture of
bacteria | | Incubation and enumeration of microorganisms. | Tests on human
pharmaceutical and
biological products.
Bacteria, Yeasts and
Moulds only | N/A | CLS 210 - ISO 11737-
1:2018/AMD 1: 2021
Sterilization of health
care products -
Microbiological
methods - Part 1:
Determination of a
population of
microorganisms on
products | | | | Dual Incubation and
Enumeration of TSA
Plates | Plate count | Factory Hygiene
Surfaces
Factory Hygiene Air | N/A | CLS 190 In house method | | | | Endotoxin testing of Medical Devices | Kinetic Assay | Tests on human pharmaceutical and biological products. | N/A | CLS 211 -ANSI/AAMI
St72 - Bacterial
endotoxin test
methodologies, routine
monitoring and
alternative batch
testing. | | | Endotoxin Testing on
Purified Water using
Gel clot Method | Gel Clot | Tests on human pharmaceutical and biological products endotoxin tests | N/A | CLS 185 Based on
ANSI/AAMI ST
72:2019 Bacterial
Endotoxin test
methodologies,routine
monitoring and
alternatives to batch
testing | | |---|---------------------------------|---|-----|---|--| | Endotoxin Testing on
Purified Water, Renal
Water and Endoscopy
Water using Kinetic
Turbidimetric Method | Kinetic Turbidimetric
Method | Tests on human pharmaceutical and biological products endotoxin tests | N/A | CLS 186 Based on
ANSI/AAMI ST
72:2019 Bacterial
Endotoxin test
methodologies,routine
monitoring and
alternatives to batch
testing, USP (85)
Bacterial Endotoxin
Test | | | Enumeration of Microorganisms Colony count technique at 22°C, 30°C and 37°C in water | Spread plate | waters: Bacteriological condition of potable waters waters: Bacteriological condition of industrial waters Micro tests for factory hygiene purposes | N/A | CLS 95 based on the Microbiology of Drinking water part 7 (2020)- Methods for the enumeration of Heterotrophic bacteria by pour plate and spread techniques | | | Enumeration of Total
Coliforms and E.coli | Colilert | Waters: Factory hygiene Waters: Industrial waters Waters: Potable water Waters: Environmental Waters | N/A | CLS 33 Based on the
Microbiology of
Drinking Water part 4
(d) (2016) | | | Enumeration of Total
Viable Counts at 22°C,
35°C and 37°C | pour plate | Waters: Industrial waters | N/A | CLS 160 fluid
monitoring membrane
filtration based on ISO | | | | <u> Anna</u> | | | | | |--|---------------------|--|-----|---|--| | | | | | 23500-3:2024 Water
for Haemodialysis,
USP 1230 Water for
Haemodialysis | | | Enumeration of TVC
at 30°C using
Membrane Filtration | Membrane Filtration | Waters: Industrial
waters | N/A | CLS 171 Based on
ISO 15883-
1:2006/Amd 1:2014
Washer Disinfectors
Part 1 and ISO 15883-
4:2018 Washer
Disinfectors - Part 4 | | | Incubation and
Enumeration of SDA
Plates at 22.5°C | Plate count | Factory Hygiene
Surfaces
Factory Hygiene Air | N/A | CLS 187 In house method | | | Incubation and
Enumeration of TSA
Plates at 32.5°C | | Factory Hygiene
Surfaces
Factory Hygiene Air | N/A | CLS 188 in house method | | # **CLS Galway** # **Chemical Testing** | Chemistry Field - Tests | Test name | Analyte | Range of measurement | Matrix | Equipment/technique | Standard reference/SOP | |---|-----------|-----------|----------------------|----------------|---------------------|---| | 766 Environmental testing (inc waters)01 Metal analysis | Aluminium | Aluminium | 2 - 500 ug/l | Drinking Water | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | | Antimony | Antimony | 0.5 - 250 ug/l | Drinking Water | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | | Arsenic | Arsenic | 0.5 - 250 ug/l | Drinking Water | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | | Barium | Barium | 0.5 - 250 ug/l | Drinking Water | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | | Beryllium | Beryllium | 0.5 - 250 ug/l | Drinking Water | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | | Boron | Boron | 10 - 500 ug/l | Drinking Water | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | | Cadmium | Cadmium | 0.5 - 250 ug/l | Drinking Water | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | | Calcium | Calcium | 3 - 300 mg/l | Drinking Water | ICP-MS | Documented in house method based on | | | | | | | USEPA 200.8 ICP-MS
CLS 129 | |------------|----------------|----------------|----------------|--------|---| | Chromium | Chromium | 0.5 - 250 ug/l | Drinking Water | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | Cobalt | Drinking Water | 0.5 - 250 ug/l | Cobalt | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | Copper | Copper | 1 - 500 ug/l | Drinking Water | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | Iron | Iron | 10 - 500 ug/l | Drinking Water | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | Lead | Lead | 0.5 - 250 ug/l | Drinking Water | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | Magnesium | Magnesium | 0.8 - 80 mg/l | Drinking Water | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | | Waste Water | 0.8 - 80 mg/l | Magnesium | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | Manganese | Manganese | 5 - 250 ug/l | Drinking Water | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | Molybdenum | Molybdenum | 0.5 - 250 ug/l | Drinking Water | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | Nickel | Nickel | 0.5 - 250 ug/l | Drinking Water | ICP-MS | Documented in house method based on | | | | | | | USEPA 200.8 ICP-MS
CLS 129 | |-----------|-----------|----------------|----------------|--------|---| | Potassium | Potassium | 0.5 - 50 mg/l | Drinking Water | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | Selenium | Selenium | 0.5 - 250 ug/l | Drinking Water | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | Silver | Silver | 0.5 - 125 ug/l | Drinking Water | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | Sodium | Sodium | 1 - 100 mg/l | Drinking Water | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | Strontium | Strontium | 0.5 - 250 ug/l | Drinking Water | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | Tellurium | Tellurium | 0.5 - 250 ug/l | Drinking Water | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | Thallium | Thallium | 0.5 - 250 ug/l |
Drinking Water | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | Tin | Tin | 0.5 - 250 ug/l | Drinking Water | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | Zinc | Zinc | 5 - 500 ug/l | Drinking Water | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | # **Head Office** # **Biological and Veterinary Testing** | Biology/veterinary field - Tests | Test name | Technique | Matrix | Equipment | Std. reference | |--|--|---|---|-----------|--| | 802 Preparation of films on slides followed by microscopic examination with or without fixation and staining with dyes as required02 Microscopic examination for parasites | Enumeration of
Cryptosporidium | Filta Max | Waters: enumeration
of Free living Protoza
Waters:
Environmental
waters
Waters: Potable
water | Filta Max | CLS 139 Based on
MODW (2010) Part 14 and
U.S EPA Method 1623:1
(2012) | | 803 Culture of organisms in liquid or agar based culture media with visual or instrument monitoring for growth01 Culture of bacteria | Detection and
Enumeration of
Legionella species in
water and the
detection of Legionella
pneumophila,
serogroups 1 and 2-
14 and presumptive
spp(not legionella
pneumophilia 1 -14) | Direct filtration, Acid
treatment and
Inoculation of
selective media | Factory Hygiene
Surfaces | N/A | CLS 100 Based on ISO
11731:2017 Procedure 7,
Matrix A | | | | | Waters: Industrial waters (treated, recirculating) | N/A | CLS 100 Based on ISO
11731:2017 Procedure 7,
Matrix A | | | Detection of
Campylobacter spp | Resuscitation | Confectionary Dairy products Eggs and Egg products Fish, Shellfish and Mollusks Fruit and Vegetables Meat and Meat products, game and poultry Cereals and bakery products Factory Hygiene | N/A | CLS 181 Based on ISO
10272-1:2017/Amd 1:2023
- Procedure A | | Detection of E.coli | Surfaces Prepared dishes Soups, broths and Sauces Factory Hygiene | N/A | CLS 11 Based on ISO | | |--|--|-----|---|--| | 0157 Detection of Ecoli 0157 | Surfaces Cereals and Bakery products Dairy Products Factory hygiene surfaces Meat and Meat products, game and poultry Prepared dishes Soups, Broths and Sauces | N/A | 16654:2001/ Amd 2:2023
CLS 11 based on ISO
16654:2001/ Amd 2:2023 | | | | Cereals and Bakery products Dairy Products Factory hygiene surfaces Meat and Meat products, game and poultry Prepared dishes Soups, Broths and Sauces | N/A | CLS 159 Based on Reveal
for Ecoli 0157 20 hour
system | | | Detection of Listeria
monocytogenes | Fish, Shellfish and Molluscs Dairy products Meat and Meat Products game and poultry Eggs and Egg products Cereals and Bakery Products Confectionary Fruit and Vegetables Animal Feed | N/A | CLS 4 Based on IS EN ISO 11290-1:2017 | | | | Pet Foods
Factory Hygiene
Surfaces
Soups, Broths and
Sauces
Prepared Dishes | | | |--|---|--|--| | Detection of listeria monocytogenes by ALOA One Day Method | Animal feeder Cereals and Bakery Products Confectionary Dairy products Eggs and Egg products Factory Hygiene Surfaces Fish, Shellfish and Molluscs Fruit and Vegetables Meat and Meat products, game and poultry Cereals and bakery products Factory Hygiene Surfaces Meat surfaces Product contact surfaces Soups, broths and Sauces | CLS 163 Based on AES
ALOA One Day (AFNOR
cert AES 10/03-09/00) | | | Detection of listeria
species by ALOA One
Day Method | Cereals and Bakery
Products
Confectionary
Dairy products
Eggs and Egg
products
Fish, Shellfish and
Mollusks
Fruit and Vegetables | CLS 164 Based on AES
ALOA One Day (AFNOR
cert AES 10/03-09/00) | | | | Meat and Meat products, game and poultry Cereals and bakery products Factory Hygiene Surfaces Meat surfaces Product contact surfaces Prepared dishes Soups, broths and Sauces | | | |-------------------------|--|---|--| | Detection of salmonella | Meat Surfaces Product contact surfaces Fish, Shellfish and Molluscs Dairy products Meat and Meat Products game and poultry Eggs and Egg products Cereals and Bakery Products Confectionary Fruit and Vegetable Animal Feed Pet Foods Factory Hygiene Surfaces 'Factory Hygiene Surfaces and Environmental Swabs for poultry Primary Production' Soups, Broths and Sauces Prepared Dishes | CLS 2 Based on ISO 6579-1:2017/Amd 1:2020 | | | | | Waters: Factory
hygiene
Waters: Industrial
waters
Waters: Potable
water | N/A | CLS 45 Based on the
Microbiology of Drinking
Water (2006) Part 9 | | |--|---------------------|---|-----|--|--| | Enumeration of Total
Coliforms | Pour Plate | Fish, Shellfish and Molluscs Dairy products Meat and Meat Products game and poultry Eggs and Egg products Cereals and Bakery Products Confectionary Fruit and Vegetables Animal Feed Pet Foods Factory Hygiene Surfaces | N/A | CLS 8 Based on ISO
4832:2006 | | | Enumeration of
Clostridium
perfringens | Membrane Filtration | Waters: Factory hygiene Waters: Industrial waters Waters: Potable water Waters: Environmental Waters Including Effluents | N/A | CLS 43 Based on the
Microbiology of Drinking
Water (2021) Part 6 (b) | | | Enumeration of
Campylobacter
species in food | Spread Plate | Dairy products Eggs and Egg products Meat and Meat Products game and poultry Fish, Shellfish and Molluscs Soups, Broths and | N/A | CLS 197 Based on
ISO/TS 10272-
2:2017/Amd1:2023 | | | | | Sauces Cereals and Bakery Products Fruit and Vegetables Confectionary Prepared Dishes Animal Feed Meat and Meat Products game and poultry Factory Hygiene Surfaces | | | | |---|--------------|--|-----|--|--| | Enumeration of
Clostridium
Perfringens | pour plate | non alcoholic beverages Fish, Shellfish and Molluscs Dairy products Meat and Meat Products game and poultry Eggs and Egg products Cereals and Bakery Products Confectionary Fruit and Vegetables Animal Feed Pet Foods | N/A | CLS 7 Based on ISO
15213-2:2023 | | | Enumeration of
Coagulase positive
Staphylococci | Spread Plate | Cereals and Bakery Products Fish, Shellfish and Molluscs Dairy products Meat and Meat Products game and poultry Eggs and Egg products Confectionary Fruit and Vegetables Animal Feed | N/A | CLS 3 Based on IS EN
ISO 6888-1:2022 using
EASY STAPH agar | | | | | Pet Foods Factory Hygiene Surfaces Soups, Broths and Sauces Prepared Dishes | | | | |---|------------|---|-----|--|--| | Enumeration of E.coli | | Dairy products Meat and Meat Products game and poultry Eggs and Egg products Cereals and Bakery Products Confectionary Fruit and Vegetables Animal Feed Pet Foods Factory Hygiene Surfaces Soups, Broths and Sauces Prepared Dishes | N/A | CLS 198 Based on ISO 16649-2:2001 | | | Enumeration of E.coli using an MPN method | | Fish, Shellfish and
Molluscs | N/A | CLS 92 Based on Cefas
Protocol Issue 1,
29/06/2020 Enumeration
of Ecoli in Molluscan
Bivalve Shellfish and ISO
16649-3:2015 | | | Enumeration of
Enterobacteriaceae | Pour
Plate | Meat Surfaces Product contact surfaces Fish, Shellfish and Molluscs Dairy products Meat and Meat Products game and poultry Eggs and Egg products Cereals and Bakery | N/A | CLS 21 based on IS EN
ISO 21528-2:2017 using
RAPID'Enterobacteriaceae
Agar | | | | | Products Confectionary Fruit and Vegetables Animal Feed Pet Foods Factory Hygiene Surfaces Soups, Broths and Sauces Prepared Dishes | | | | |---|---------------------------|---|-----|--|--| | Enumeration of
Enterobacteriaceae
(Single Plate) | pour plate (single plate) | Animal feed Dairy products Eggs and Egg products Meat and meat products, game and poultry Fish, Shellfish and Molluscs Fruit and Vegetables Pet Foods | N/A | CLS 134 In House Method | | | Enumeration of
Enterococci | Membrane Filtration | Waters:
Environmental
Waters Including
Effluents | N/A | CLS 42 Based on the
Microbiology of Drinking
Water (2012) Part 5 (a) | | | | | Waters: Factory hygiene Waters: Industrial waters Waters: Potable water Waters: Environmental Waters Including Effluents | N/A | CLS 42 Based on the
Microbiology of Drinking
Water (2012) Part 5 (a) | | | Enumeration of
Listeria Species
including Listeria
Monocytogenes | Resuscitation | Confectionery Dairy products Eggs and Egg products Fruit and Vegetables | N/A | CLS 6 Based on IS EN ISO 11290-2:2017 | | | | | Meat and Meat products, game and poultry Cereals and bakery products Factory Hygiene Surfaces Fish, Shellfish and Molluscs Prepared Dishes Soups, Broths and Sauces | | | | |--|----------------------------|--|-----|---|--| | Enumeration of micro organisms at 22°C | Spread Plate | Fish, Shellfish and
Molluscs | N/A | CLS 48 Based on IS EN
ISO 4833-2:2013 Cor
1:2014 | | | | | non alcoholic beverages Fish, Shellfish and Molluscs Dairy products Meat and Meat Products game and poultry Eggs and Egg products Confectionary Fruit and Vegetables Animal Feed Pet Foods | N/A | CLS 48 based on IS EN ISO 4833-2:2013 Cor 1:2014/ Amd1:2022 | | | | TVC @ 22°C - pour
plate | non alcoholic
beverages
Fish, Shellfish and
Molluscs
Dairy products
Meat and Meat
Products game and
poultry
Eggs and Egg | N/A | CLS 47 based on IS EN ISO 4833-2:2013 Cor 1:2014, Amd1:2022 | | | | | products
Confectionary
Fruit and Vegetables
Animal Feed
Pet Foods | | | | |---|----------------------------|--|-----|---|--| | Enumeration of Micro
organisms at 30°C | TVC @ 30°C – pour
plate | Animal feed Confectionery Dairy products Eggs and Egg products Fish, Shellfish and Mollusks Fruit and Vegetables Meat and Meat products, game and poultry Pet foods Cereals and bakery products Non-alcoholic beverages Factory Hygiene Surfaces Meat surfaces Product contact surfaces Prepared dishes Soups, broths and Sauces | N/A | CLS 15 based on IS EN ISO 4833-1:2013/ Amd 1:2022 | | | | TVC @ 30°C - spread plate | Animal feed Confectionery Dairy products Eggs and Egg products Fish, Shellfish and Mollusks Fruit and Vegetables Meat and Meat products, game and poultry Pet foods Cereals and bakery | N/A | CLS 46 based on IS EN
ISO 4833-2:2013 Cor
1:2014/Amd 1:2022 | | | | | products Non-alcoholic beverages Factory Hygiene Surfaces Meat surfaces Product contact surfaces Prepared dishes Soups, broths and Sauces | | | | |-------------------------------|---------------------------|---|-----|---|--| | eration of micro | TVC @ 37°C - pour plate | Animal feed Confectionery Dairy products Eggs and Egg products Fish, Shellfish and Molluscs Fruit and Vegetables Meat and Meat products, game and poultry Pet foods Non-alcoholic beverages | N/A | CLS 49 Based on IS EN ISO 4833-1:2013, Amd 1:2022 | | | | TVC @ 37°C - spread plate | Non-alcoholic
beverages | N/A | CLS 50 Based on IS EN ISO 4833-1:2013/Amd 1:2022 | | | eration of
nptive Bacillus | Spread Plate | Dairy products Meat and Meat Products game and poultry Eggs and Egg products Cereals and Bakery Products Confectionary Fruit and Vegetables Animal Feed Pet Foods | N/A | CLS 20 Based on IS EN ISO 7932:2004/Amd:2020 | | | | | Soups, Broths and
Sauces
Prepared Dishes | | | | |--|---------------------|---|-----|--|--| | Enumeration of
Presumptive
Pseudomonas SPP | | non alcoholic
beverages
Meat and Meat
Products game and
poultry | N/A | CLS 22 Based on ISO
13720:2010 | | | Enumeration of
Pseudomonas
aeruginosa | Membrane Filtration | Waters: Factory hygiene Waters: Industrial waters Waters: Potable water Waters: Environmental water | N/A | CLS 44 Based on the
Microbiology of Drinking
water Part 8 (2015) | | | Enumeration of ß-glucuronidase positive E.coli:Colony Count Technique at 44°C using 5-bromo-4-chloro-3-indolyl-ß-D-glucuronide | Pour Plate | Dairy products Eggs and Egg products Meat and Meat Products game and poultry Fish, Shellfish and Molluscs Soups, Broths and Sauces Cereals and bakery products Fruit and Vegetables Confectionary Prepared Dishes Animal Feed | N/A | CLS 198 Based on ISO 16649-2:2018 | | | Enumeration of Total
Coliforms and E.coli | Colilert | Waters: Factory
hygiene
Waters: Industrial
waters
Waters: Potable
water | N/A | CLS 33 Based on the
Microbiology of Drinking
Water (2016) Part 4 (d) | | | Enumeration of Total
Coliforms and E.coli
and Faecal Coliform | Membrane Filtration | Waters: Factory hygiene Waters: Industrial waters Waters: Potable water Waters: Environmental waters including effluents | N/A | CLS 16 Based on the
Microbiology of Drinking
Water (2016) Part 4 (a)
and ISO 9308:2014/Amd
1:2016 | | |---|-----------------------------|--|-----|---|--| | Enumeration of TVC at 22°C, 30°C and at 37°C (Single plate) | | Animal feed Dairy products Eggs and Egg products Factory Hygiene Surfaces Fish, Shellfish and Molluscs Fruit and Vegetables Meat and Meat products, game and poultry Pet foods Non-alcoholic beverages | N/A | CLS 132 In House Method | | | | Spread Plate (single plate) | Dairy products Eggs and Egg products Meat and Meat Products game and poultry Fish, Shellfish and Molluscs Fruit and Vegetables Non-alcoholic Beverages Pet Foods Animal Feed | N/A | CLS 133 In House Method | | | Enumeration of TVCs (Air Settlement plates) | | Factory Hygiene Air | N/A | CLS 82 In house method | | | | | 2 | | | | | |------|--|-------------|--|-----|---|--| | | meration of TVCs
tact plates | | Factory Hygiene
Surfaces | N/A | CLS 80 Based on ISO
18593:2018 | | | | meration of Yeast
Mould | Plate count | Factory Hygiene Air | N/A | CLS 130 In House Method | | | | | | Cereals and Bakery products Dairy products Factory Hygiene Surfaces Fruit and Vegetables Non-alcoholic beverages Prepared dishes | | CLS 1 Based on ISO
21527-1 and 2:2008 | | | Meth | nbrane Filtration
hod using
omocult Agar | | Waters: Potable
water | | CLS 199 Based on ISO
9308-1:2014 Detection
and Enumeration of Total
Coliforms and E.coli in
water with low bacterial
Flora | | # **Head Office** # **Chemical Testing** | Chemistry Field - Tests | Test name | Analyte | Range of measurement | Matrix | Equipment/technique | Standard reference/SOP | |---|-----------|---------|----------------------|--|---------------------|---| | 766 Environmental testing
(inc waters)01 Metal
analysis | Aluminium | | 2 μg - 10,000 μg/L | Bore Waters Other waters (surface waters) Waste water
treatment plants effluent (WWTP effluent) Waters for Potable and Domestic Purposes | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | | Antimony | | 0.5 μg - 5,000 μg/L | Bore Waters Other waters (surface waters) Waste water treatment plants effluent (WWTP effluent) Waters for Potable and Domestic Purposes | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | | Arsenic | | 0.5 μg - 5,000 μg/L | Bore Waters Other waters (surface waters) Waste water treatment plants effluent (WWTP effluent) Waters for Potable and Domestic Purposes | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | | Barium | | 0.5 μg - 5,000 μg/L | Bore Waters
Other waters
(surface waters) | ICP-MS | Documented in house method based on | | Beryllium | |-----------| | | | Boron | | Cadmium | | Calcium | | | Waste water
treatment plants
effluent (WWTP
effluent)
Waters for Potable
and Domestic
Purposes | | USEPA 200.8 ICP-MS
CLS 129 | |---------------------|--|--------|---| | 0.5 μg - 5,000 μg/L | Bore Waters Other waters (surface waters) Waste water treatment plants effluent (WWTP effluent) Waters for Potable and Domestic Purposes | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | 10 μg - 10,000 μg/L | Bore Waters Other waters (surface waters) Waste water treatment plants effluent (WWTP effluent) Waters for Potable and Domestic Purposes | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | 0.5 μg - 5,000μg/L | Bore Waters Other waters (surface waters) Waste water treatment plants effluent (WWTP effluent) Waters for Potable and Domestic Purposes | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | 3 mg - 3,000 mg/L | Bore Waters Other waters (surface waters) Waste water treatment plants | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | | | | effluent (WWTP effluent) Waters for Potable and Domestic Purposes | | | |--------------|---------|---------------------|--|--------|---| | Chromium | | 0.5 μg - 5,000μg/L | Bore Waters Other waters (surface waters) Waste water treatment plants effluent (WWTP effluent) Waters for Potable and Domestic Purposes | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | Cobalt | | 0.5 μg - 5,000 μg/L | Bore Waters Other waters (surface waters) Waste water treatment plants effluent (WWTP effluent) Waters for Potable and Domestic Purposes | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | Copper | | 1 μg - 10,000 μg/L | Bore Waters Other waters (surface waters) Waste water treatment plants effluent (WWTP effluent) Waters for Potable and Domestic Purposes | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | ICPM Metals | Mercury | 0.05-2.5ug/l | Waste Water | ICPMS | CLS 129/USEP A
200.8 | | ICPMS Metals | | 0.05-2.5ug/l | Drinking Water | ICPMS | CLS 129/USEP A
200.8 | | | | 0.05-2.5ug/l | Ground Water | ICPMS | CLS 129/USEP A
200.8 | | | | 0.05-2.5ug/l | Surface Water | ICPMS | CLS 129/USEP A
200.8 | |-----------|--------|---------------------|--|--------|---| | | Silver | 0.5-125ug/l | Ground Water | ICPMS | CLS 129/USEP A
200.8 | | | | 0.5-125ug/l | Surface Water | ICPMS | CLS 129/USEP A
200.8 | | | | 0.5-125ug/l | Waste Water | ICPMS | CLS 129/USEP A
200.8 | | Iron | | 10 μg - 10,000 μg/L | Bore Waters Other waters (surface waters) Waste water treatment plants effluent (WWTP effluent) Waters for Potable and Domestic Purposes | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | Lead | | 0.5 µg - 5,000 µg/L | Bore Waters Other waters (surface waters) Waste water treatment plants effluent (WWTP effluent) Waters for Potable and Domestic Purposes | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | Magnesium | | 0.8 mg - 800 mg/L | Bore Waters Other waters (surface waters) Waste water treatment plants effluent (WWTP effluent) Waters for Potable and Domestic Purposes | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | Manganese | | 5 μg - 5,000 μg/L | Bore Waters
Other waters
(surface waters) | ICP-MS | Documented in house method based on | | Molybdenum | |------------| | | | | | Nickel | | Potassium | | Selenium | | | Waste water
treatment plants
effluent (WWTP
effluent)
Waters for Potable
and Domestic
Purposes | | USEPA 200.8 ICP-MS
CLS 129 | |---------------------|--|--------|---| | 0.5 μg - 5,000 μg/L | Bore Waters Other waters (surface waters) Waste water treatment plants effluent (WWTP effluent) Waters for Potable and Domestic Purposes | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | 0.5 μg - 5,000 μg/L | Bore Waters Other waters (surface waters) Waste water treatment plants effluent (WWTP effluent) Waters for Potable and Domestic Purposes | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | 0.5 mg - 500 mg/L | Bore Waters Other waters (surface waters) Waste water treatment plants effluent (WWTP effluent) Waters for Potable and Domestic Purposes | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | 0.5 μg - 5,000 μg/L | Bore Waters Other waters (surface waters) Waste water treatment plants | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | Sodium | |-----------| | Strontium | | | | Fellurium | | Thallium | | | effluent (WWTP
effluent)
Waters for Potable
and Domestic
Purposes | | | |---------------------|---|--------|---| | 1 mg - 1,000 mg/L | Bore Waters
Other waters
(surface waters)
Waste water
treatment plants
effluent (WWTP
effluent)
Waters for Potable
and Domestic
Purposes | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | 5 μg - 5,000 μg/L | Bore Waters Other waters (surface waters) Waste water treatment plants effluent (WWTP effluent) Waters for Potable and Domestic Purposes | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | 0.5 μg - 5,000 μg/L | Bore Waters Other waters (surface waters) Waste water treatment plants effluent (WWTP effluent) Waters for Potable and Domestic Purposes | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | 0.5 μg - 5,000 μg/L | Bore Waters Other waters (surface waters) Waste water treatment plants effluent (WWTP effluent) | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | | Tin | |---|------------------------------| | | Vanadium | | | Zinc | | 766 Environmental testing
(inc waters)02
Biochemical oxygen
demand | Biochemical Oxygen
Demand | | | Waters for Potable
and Domestic
Purposes | | | |---------------------|--|----------|---| | 0.5 μg - 5,000 μg/L | Bore Waters Other waters (surface waters) Waste water treatment plants effluent (WWTP effluent) Waters for Potable and Domestic Purposes | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | 0.5 μg - 5,000 μg/L | Bore Waters Other waters (surface waters) Waste water treatment plants effluent (WWTP effluent) Waters for Potable and Domestic Purposes | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | 5 μg - 10,000 μg/L | Bore Waters Other waters (surface waters) Waste water treatment plants effluent (WWTP effluent) Waters for Potable and Domestic Purposes | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | 1-7,000 mg/L | Bore waters Other waters (surface waters) Saline waters Sewage Trade wastes Waters for potable and domestic purposes | DO Probe | Documented in house
method based on
APHA standard
methods for the
examination of water
and waste 24th
edition, 2020 (unless
otherwise stated) CLS
12 Measurement of | | | | | | Waste water
treatment plants
effluent (WWTP
effluent) | | Oxygen consumed
over 5 days (APHA
5210B) | |--|-----------------------------|------|------------------|--
----------------------------|--| | | BOD using automated system | BOD | 1-3000 mg/l | Influent, Effluent,
Surface Water,
Ground Water and
Saline Water | Automated BOD
Analyser | Standard Methods for
the Examination of
Water and
Wastewater, 24th ed.
2023. CLS214 | | | cBOD using automated system | cBOD | 1-3000 mg/l | Influent, Effluent,
Surface Water,
Ground Water and
Saline Water | Automated cBOD
Analyser | Standard Methods for
the Examination of
Water and
Wastewater, 24th ed.
2023 CLS214 | | 766 Environmental testing (inc waters)03 Chemica oxygen demand | Chemical Oxygen
Demand | | 10 - 30,000 mg/L | Bore waters Other waters (surface waters) Saline waters Sewage Trade wastes Waters for potable and domestic purposes Waste water treatment plants effluent (WWTP effluent) | DR5000 | CLS 52 Based on
Hach Procedures
Manual 9th Edition
1999 and standard
methods for the
examination of water
and wastewater 24th
edition, 2023 | | 766 Environmental testing (inc waters)04 Organic | Benzene | | 10-10,000 μg/L | Bore Waters Other waters (surface waters) Saline waters Trade wastes Waters for Potable and domestic purposes | GC-FID | In house method CLS
148 based on USEPA
8015B | | | Ethylbenzene | | 10-10,000 μg/L | Bore Waters Other waters (surface waters) Saline waters Trade wastes Waters for Potable | GC-FID | In house method CLS
148 based on USEPA
8015B | | o-Xylene | |---| | | | | | | | t-butyl methyl ether | | | | | | | | Benzene | | | | | | | | Ethylbenzene | | | | | | | | Extractable
Hydrocarbons by GC- | | FID Diesel Range and Lube Oil (C ₈ - C ₄₀) | | - (-0 -40) | | | | | and domestic purposes | | | |---|---|--------|---| | 10-10,000 μg/L | Bore Waters Other waters (surface waters) Saline waters Trade wastes Waters for Potable and domestic purposes | GC-FID | In house method CLS
148 based on USEPA
8015B | | 10-10,000 µg/L | Bore Waters Other waters (surface waters) Saline waters Trade wastes Waters for Potable and domestic purposes | GC-FID | In house method CLS
148 based on USEPA
8015B | | 0.01mg/kg to 20
mg/kg | Sediments | GC-FID | In house method CLS
157 and CLS 148
based on USEPA
8015B | | 0.01mg/kg to 20
mg/kg | Sediments
Soils (Loam, Sand
and Peat) | GC-FID | In house method CLS
157 and CLS 148
based on USEPA
8015B | | 0.01mg/kg to 20
mg/kg | Sediments | GC-FID | In house method CLS
157 and CLS 148
based on USEPA
8015B | | 0.01mg/kg to 20
mg/kg | Sediments
Soils (Loam, Sand
and Peat) | GC-FID | In house method CLS
157 and CLS 148
based on USEPA
8015B | | 10-10,000 µg/L
10-10,000 µg/L
10-10,000 µg/L
10-10,000 µg/L
10-10,000 µg/L
10-10,000 µg/L
200-10,000 µg/L | Bore Waters Other waters (surface waters) Saline waters Sewage Trade wastes Waters for Potable | GC-FID | CLS 147 Method
based on USEPA
8015B | | | | | and Domestic
Purposes
Waste Water
Treatment plants
Effluent (WWTP
effluent) | | | |---------------|--|---|---|---------------------------|--| | | | 200 mg/kg to 2,000
mg/kg
50 mg/kg to 2,000
mg/kg
50 mg/kg to 2,000
mg/kg | Peat
Sediments
Soils (Loam, and
Sand) | GC-FID | In house method CLS
156 and CLS 147
Method adapted from
8015B | | m / p- Xylene | | 0.02 mg/kg to 40
mg/kg | Sediments | GC-FID | In house method CLS
157 and CLS 148
based on USEPA
8015B | | | | 0.02 mg/kg to 40
mg/kg | Sediments
Soils (Loam, Sand
and Peat) | GC-FID | In house method CLS
157 and CLS 148
based on USEPA
8015B | | | | 20 - 20,000 μg/L | Bore Waters Other waters (surface waters) Saline waters Trade wastes Waters for Potable and domestic purposes | GC-FID | In house method CLS
148 based on USEPA
8015B | | o-Xylene | | 0.01mg/kg to 20
mg/kg | Sediments | GC-FID | In house method CLS
157 and CLS 148
based on USEPA
8015B | | | | 0.01mg/kg to 20
mg/kg | Sediments
Soils (Loam, Sand
and Peat) | GC-FID | In house method CLS
157 and CLS 148
based on USEPA
8015B | | PAH by HPLC | Polycylic Aromatic
Hydrocarbons (sum of
4) | 0.04-1.6ug/l | Drinking Water | Calculation based on HPLC | CLS 149/ISO 17993
and Agilent 1200 User
Manual | | Petrol Range Organics (PRO) (C5 to C12) | 0.1mg/kg to 169
mg/kg | Sediments | GC-FID | In house method CLS
157 and CLS 148
based on USEPA
8015B | |--|--------------------------|--|--------|--| | | 0.1mg/kg to 169
mg/kg | Soils (Loam, Sand
and Peat) | GC-FID | In house method CLS
157 and CLS 148
based on USEPA
8015B | | | 10-56,250 μg/L | Bore Waters | GC-FID | In house method CLS
148 based on USEPA
8015B | | | 10-56,250 μg/L | Other waters (surface waters) | GC-FID | In house method CLS
148 based on USEPA
8015B | | | 10-56,250 μg/L | Saline Waters | GC-FID | In house method CLS
148 based on USEPA
8015B | | | 10-56,250 μg/L | Trade Wastes | GC-FID | In house method CLS
148 based on USEPA
8015B | | | 10-56,250 μg/L | Waters for Potable
and Domestic
Purposes | GC-FID | In house method CLS
148 based on USEPA
8015B | | Polycyclic Aromatic
Hydrocarbon by HPLC
Acenaphthene | 10 - 400 ng/l | Waters for Potable
and Domestic
Purposes | HPLC | CLS 149 Based onISO
17993 and Agilent
12000 series G1321A
user manual | | Polycyclic Aromatic
Hydrocarbon by HPLC
Acenaphylene | 50 - 400 ng/l | Other waters
Waters for Potable
and Domestic
Purposes | HPLC | CLS 149 Based onISO
17993 and Agilent
12000 series G1321A
user manual | | Polycyclic Aromatic
Hydrocarbon by HPLC
Anthracene | 10 - 400 ng/l | Other waters
Waters for Potable
and Domestic
Purposes | HPLC | CLS 149 Based onISO
17993 and Agilent
12000 series G1321A
user manual | | Polycyclic Aromatic
Hydrocarbon by HPLC
Benzo (a) fluoranthene | 10 - 400 ng/l | Other waters
Waters for Potable
and Domestic
Purposes | HPLC | CLS 149 Based onISO
17993 and Agilent
12000 series G1321A
user manual | | Polycyclic Aromatic
Hydrocarbon by HPLC
Benzo (a) pyrene | |---| | Polycyclic Aromatic
Hydrocarbon by HPLC
Benzo (b) fluoranthene | | Polycyclic Aromatic
Hydrocarbon by HPLC
Benzo (g,h,i) perylene | | Polycyclic Aromatic
Hydrocarbon by HPLC
Benzo (k) fluoranthene | | Polycyclic Aromatic
Hydrocarbon by HPLC
Dibenzo (a,h)
anthracene | | Polycyclic Aromatic
Hydrocarbon by HPLC
Fluorene | | Polycyclic Aromatic
Hydrocarbon by HPLC
Fluroanthene | | Polycyclic Aromatic
Hydrocarbon by HPLC
Indeno (1,2,3-cd)
perylene | | Polycyclic Aromatic
Hydrocarbon by HPLC
Naphthalene | | 10 - 400 ng/l
5 - 400 ng/l | Other waters Waters for Potable and Domestic Purposes | HPLC | CLS 149 Based onISO
17993 and Agilent
12000 series G1321A
user manual | |-------------------------------|--|------|--| | 10 - 400 ng/l | Other waters | HPLC | CLS 149 Based onISO
17993 and Agilent
12000 series G1321A
user manual | | 10 - 400 ng/l | Waters for Potable
and Domestic
Purposes | HPLC | CLS 149 Based onISO
17993 and Agilent
12000 series G1321A
user manual | | 10 - 400 ng/l | Other waters
Waters for Potable
and Domestic
Purposes | HPLC | CLS 149 Based onISO
17993 and Agilent
12000 series G1321A
user manual | | 10 - 400 ng/l | Other waters
Waters for Potable
and Domestic
Purposes | HPLC | CLS 149 Based onISO
17993 and Agilent
12000 series G1321A
user manual | | 10 - 400 ng/l | Other waters
Waters for Potable
and Domestic
Purposes | HPLC | CLS 149 Based onISO
17993 and Agilent
12000 series G1321A
user manual | | 10 - 400 ng/l | Other waters
Waters for Potable
and Domestic
Purposes | HPLC | CLS 149 Based onISO
17993 and Agilent
12000 series G1321A
user manual | | 10 - 400 ng/l | Other waters Waters for Potable and Domestic Purposes | HPLC | CLS 149 Based onISO
17993 and Agilent
12000 series G1321A
user manual | | 10 - 400 ng/l | Other waters
Waters for Potable
and Domestic
Purposes | HPLC | CLS 149 Based onISO
17993 and Agilent
12000 series G1321A
user manual | | 50 - 400 ng/l | Other waters
Waters for Potable
and Domestic
Purposes | HPLC | CLS 149 Based onISO
17993 and Agilent
12000 series G1321A
user manual | | Polycyclic Aromatic
Hydrocarbon by HPLC
Phenanthrene | | 10 - 400 ng/l | Other waters
Waters for Potable
and Domestic
Purposes | HPLC | CLS 149 Based onISO
17993 and Agilent
12000 series G1321A
user manual | |---
---|--------------------------|---|--------|--| | Polycyclic Aromatic
Hydrocarbon by HPLC
Pyrene | | 50 - 400 ng/l | Other waters
Waters for Potable
and Domestic
Purposes | HPLC | CLS 149 Based onISO
17993 and Agilent
12000 series G1321A
user manual | | t-butyl methyl ether | | 0.01mg/kg to 20
mg/kg | Sediments | GC-FID | In house method CLS
157 and CLS 148
based on USEPA
8015B | | | | 0.01mg/kg to 20
mg/kg | Sediments
Soils (Loam, Sand
and Peat) | GC-FID | In house method CLS
157 and CLS 148
based on USEPA
8015B | | Toluene | | 0.01mg/kg to 20
mg/kg | Sediments | GC-FID | In house method CLS
157 and CLS 148
based on USEPA
8015B | | | | 0.01mg/kg to 20
mg/kg | Sediments
Soils (Loam, Sand
and Peat) | GC-FID | In house method CLS
157 and CLS 148
based on USEPA
8015B | | | | 10-10,000 μg/L | Bore Waters Other waters (surface waters) Saline waters Trade wastes Waters for Potable and domestic purposes | GC-FID | In house method CLS
148 based on USEPA
8015B | | Total Extractable Petroleum Hydrocarbons by GC- FID TPH (>nC5 to C44) | | 20 - 10,000 μg/l | Bore Waters
Other waters
(surface waters) | GC-FID | Based on USEPA
8015B modified.
Documented in house
method CLS 193 | | VOC by GCMSD | Chloroform
Bromodichloromethane
Dibromochloromethane
Bromoform | | Drinking Water | GCMSD | CLS 183/USEPA
524.3 | | | | | | | - | |--|---------------------------------|---|--|-------|--| | | Total Trihalomethanes
(THMs) | 1.7 - 800 ug/l | | | | | Volatile Organic
compounds (VOC)
including
Trihalomethanes (THM)
1,1,1,2-
Tetrachloroethane | | 2-50 μg/l
0.5-50 μg/l
0.5-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | Volatile Organic
compounds (VOC)
including
Trihalomethanes (THM)
1,1,1-trichloroethane | | 0.5-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | Volatile Organic
compounds (VOC)
including
Trihalomethanes (THM)
1,1,2,2-
tetrachloroethane | | 4-50 μg/l
0.5-50 μg/l
0.5-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | Volatile Organic
compounds (VOC)
including
Trihalomethanes (THM)
1,1,2-trichloroethane | | 2-50 μg/l
0.5-50μg/l
0.5-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | Volatile Organic
compounds (VOC)
including
Trihalomethanes (THM)
1,1-Dichloroethane | | 2-50 μg/l
0.5-50 μg/l
0.5-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | Volatile Organic
compounds (VOC)
including
Trihalomethanes (THM)
1,1-dichloroethene | | 0.5-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | | Volatile Organic
compounds (VOC)
including
Trihalomethanes (THM)
1,1-dichloropropene | |---|---| | • | Volatile Organic
compounds (VOC)
including
Trihalomethanes (THM)
1,2,3-trichlorobenzene | | i | Volatile Organic
compounds (VOC)
including
Trihalomethanes (THM)
1,2,3-trichloropropane | | • | Volatile Organic
compounds (VOC)
including
Trihalomethanes (THM)
1,2,4-trichlorobenzene | | i | Volatile Organic
compounds (VOC)
including
Trihalomethanes (THM)
1,2,4-trimethylbenzene | | • | Volatile Organic
compounds (VOC)
including
Trihalomethanes (THM)
1,2-dibromoethane
(EDB) | | | Volatile Organic
compounds (VOC)
including
Trihalomethanes (THM)
1,2-dichlorobenzene | | 0.5-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | |---|--|-------|--| | 0.5-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 1-50 μg/l
0.5-50 μg/l
0.5-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 4-50 μg/l
0.5-50 μg/l
0.5-50μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 4-50 μg/l
2-50 μg/l
2-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 4-50 μg/l
0.1-50 μg/l
0.1-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 4-50 μg/l
0.5-50 μg/l
0.5-50 μg/l | Bore waters
Other waters
(surface waters)
Waters for Potable | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection | | Volatile Organic
compounds (VOC)
including
Trihalomethanes (THM)
1,2-dichloroethane | |---| | Volatile Organic
compounds (VOC)
including
Trihalomethanes (THM)
1,2-dichloropropane | | Volatile Organic
compounds (VOC)
including
Trihalomethanes (THM)
1,3,5 trimethylbenzene
(mesitylene) | | Volatile Organic
compounds (VOC)
including
Trihalomethanes (THM)
1,3-butadiene | | Volatile Organic
compounds (VOC)
including
Trihalomethanes (THM)
1,3-dichloropropane | | Volatile Organic
compounds (VOC)
including
Trihalomethanes (THM)
1-chlorobutane (n-butyl
chloride) | | Volatile Organic
compounds (VOC)
including | | | and Domestic
Purposes | | Documented in-house procedure CLS 183 | |---|---|-------|--| | 0.2-50 μg/l
0.5-50 μg/l
0.1-50 μg/l | Bore waters Other Waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 1-50 μg/l
0.5-50 μg/l
0.5-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 4-50 μg/l
2-50 μg/l
2-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 0.5-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 1-50 μg/l
0.5-50 μg/l
0.1-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 0.5-50 μg/l | Bore waters Other waters (surface waters)) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 2-50 μg/l
0.1-50 μg/l
0.1-50 μg/l | Bore waters
Other waters
(surface waters) | GC/MS | Based on USEPA
524.3 adapted
from
Purge and Trap to | | Trihalomethanes (THM)
benzene | |---| | Volatile Organic
compounds (VOC)
including
Trihalomethanes (THM)
bromobenzene | | Volatile Organic
compounds (VOC)
including
Trihalomethanes (THM)
bromochloromethane | | Volatile Organic
compounds (VOC)
including
Trihalomethanes (THM)
bromodichloromethane | | Volatile Organic
compounds (VOC)
including
Trihalomethanes (THM)
Bromomethane (methyl
bromide) | | Volatile Organic
compounds (VOC)
including
Trihalomethanes (THM)
Carbon disulfide | | | Waters for Potable
and Domestic
Purposes | | Headspace injection
Documented in-house
procedure CLS 183 | |---|---|-------|--| | 2-50 μg/l
1-50 μg/l
1-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 0.2-50 μg/l
2-50 μg/l
0.5-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 0.2-50 μg/l
2-50 μg/l
0.5-50 μg/l | Bore waters
Other waters
(surface waters)
Waters for Potable
and Domestic
Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 2-50 μg/l
0.5-50 μg/l
0.5-50 μg/l | Bore Waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 2-50 μg/l
0.5-50 μg/l
0.5-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 2-50 μg/l
0.5-50 μg/l
0.5-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | Volatile Organic
compounds (VOC
including
Trihalomethanes (
Carbontetrachlorid
(tetrachloromethal | (THM)
de | |--|-------------| | Volatile Organic
compounds (VOC
including
Trihalomethanes (
Cis-1,2-dichloroet | THM) | | Volatile Organic
compounds (VOC
including
Trihalomethanes (
Cis-1,3-dichloropr | THM) | | Volatile Organic
compounds (VOC
including
Trihalomethanes (
dibromethane | , | | Volatile Organic
compounds (VOC
including
Trihalomethanes (
dibromochloromet | THM) | | Volatile Organic
compounds (VOC
including
Trihalomethanes (
Dichlorodifluorome
(CFC-12) | THM) | | Volatile Organic
compounds (VOC
including
Trihalomethanes (| | | 0.5-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | |---|--|-------|--| | 2-50 μg/l
0.5-50 μg/l
0.5-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 0.5-50 μg/l
1-50 μg/l | Bore waters
Waters for Potable
and Domestic
Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 2-50 μg/l | Bore Waters | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 2-50 μg/l
0.5-50 μg/l
0.1-50 μg/l | Bore Waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 1-50 μg/l
0.5-50 μg/l
0.5-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 2-50 μg/l
1-50 μg/l
1-50 μg/l | Bore waters
Other waters
(surface waters)
Waters for Potable | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection | | | Diethyl ether (ether ether) | |---|--| | c | Volatile Organic
compounds (VOC)
ncluding | | ٦ | Trihalomethanes (THM)
Diisopropyl ether (DIPE) | | C | Volatile Organic
compounds (VOC)
ncluding | | 1 | rrihalomethanes (THM)
ethylbenzene | | c | Volatile Organic
compounds (VOC) | | 1 | ncluding
Frihalomethanes (THM)
nexachlorobutadiene | | i | Volatile Organic
compounds (VOC)
ncluding
frihalomethanes (THM)
nexachloroethane | | i | Volatile Organic
compounds (VOC)
notice (TUN) | | I | Frihalomethanes (THM)
odomethane (methyl
odide) | | i | Volatile Organic
compounds (VOC)
ncluding
Frihalomethanes (THM)
m/p-xylene | | c | Volatile Organic
compounds (VOC)
ncluding | | | and Domestic
Purposes | | Documented in-house procedure CLS 183 | |---|--|-------|--| | 2-50 μg/l
0.5-50 μg/l
0.5-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 0.5-50 μg/l
2-50 μg/l
2-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 2-50 μg/l
0.5-50 μg/l
0.5-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 0.5-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 4-50 μg/l
0.1-50 μg/l
0.1-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 4-60 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 5-50 μg/l | Waters for Potable
and Domestic
Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to | | Trihalomethanes (THM)
Methyl acetate | |--| | Volatile Organic
compounds (VOC)
including
Trihalomethanes (THM)
Methyl tert-butyl ether
(MTBE) | | Volatile Organic
compounds (VOC)
including
Trihalomethanes (THM)
naphthalene | | Volatile Organic
compounds (VOC)
including
Trihalomethanes (THM)
n-butylbenzene | | Volatile Organic
compounds (VOC)
including
Trihalomethanes (THM)
n-propylbenzene | | Volatile Organic
compounds (VOC)
including
Trihalomethanes (THM)
o-xylene | | Volatile Organic
compounds (VOC)
including
Trihalomethanes (THM)
pentachloroethane | | Volatile Organic compounds (VOC) | | | | | Headspace injection
Documented in-house
procedure CLS 183 | |---------------------------------------|--|-------|--| | 2-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 4-50 μg/l
1-50 μg/l
1-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 4-50 μg/l
2-50 μg/l
2-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on
USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 4-50 μg/l
1-50 μg/l
1-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 2-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 4-50 μg/l
2-50 μg/l
0.5-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 2-50 μg/l | Bore waters
Other waters | GC/MS | Based on USEPA
524.3 adapted from | | Trih | uding
nalomethanes (THM)
ene | |----------------------------|--| | con
incl
Trih
Ten | atile Organic
npounds (VOC)
uding
alomethanes (THM)
t-amyl ether ether
EE) | | con
incl
Trih
Ter | atile Organic
npounds (VOC)
uding
alomethanes (THM)
t-amyl methyl ether
ME) | | con
incl
Trih | atile Organic
npounds (VOC)
uding
nalomethanes (THM)
achloroethene | | con
incl
Trih | atile Organic
npounds (VOC)
uding
alomethanes (THM)
rahydrofuran | | con
incl
Trih | atile Organic
npounds (VOC)
uding
nalomethanes (THM)
ene | | con
incl
Trih
Tra | atile Organic
npounds (VOC)
uding
nalomethanes (THM)
ns-1,3-
nloropropene | | | (surface waters)
Waters for Potable
and Domestic
Purposes | | Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | |---|--|-------|--| | 1-50 μg/l
5-50 μg/l
5-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 0.2-50 μg/l
1-50 μg/l
1-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 0.5-50 μg/l
0.1-50 μg/l
0.1-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 2-50 μg/l
5-50 μg/l
5-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 2-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 1-50 μg/l | Waters for Potable
and Domestic
Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | Volatile Organic
compounds (VOC)
including
Trihalomethanes (THM)
trichloroethene | |---| | Volatile Organic
compounds (VOC)
including
Trihalomethanes (THM)
Trichlorofluoromethane
(CFC-11) | | Volatile Organic
compounds (VOC)
including
Trihalomethanes (THM)
Trichloromethane
(Bromoform) | | Volatile Organic
compounds (VOC)
including
Trihalomethanes (THM)
Trichloromethane
(chloroform) | | Volatile Organic
compounds (VOC)
including
Trihalomethanes (THM)
Vinyl chloride | | Volatile Organic
compounds (VOC)
including
Trihalomethanes
(THM)4-
isopropyltoluene (p-
cymene) | | Volatile Organic
compounds (VOC)
including | | 2-50 μg/l
0.1-50 μg/l
0.1-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | |---|--|-------|--| | 1-50 μg/l
0.5-50 μg/l
0.5-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 2-50 μg/l
0.5-50 μg/l
0.1-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 2-50 μg/l
1-50 μg/l
1-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 0.5-50 μg/l
0.1-50 μg/l
0.1-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 1-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 1-50 μg/l
0.5-50 μg/l
0.5-50 μg/l | Bore waters
Other waters
(surface waters) | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to | | The state of s | | |--|--| | | Trihalomethanes
(THM)Ethyl tert-butyl
ether (ETBE) | | | Volatile Organic
compounds (VOC)
including
Trihalomethanes
(THM)Tert-
butylbenzene | | | Volatile Organic
compounds (VOC)
including
Trihalomethanes
(THM)Trans-1,2-
dichloroethene | | 766 Environmental testin
(inc waters)05 Inorgar | | | | Ammonia | | | Ammonia as NH₄ | | | Waters for Potable
and Domestic
Purposes | | Headspace injection
Documented in-house
procedure CLS 183 | |-------------------------------------|--|---------------------------------|---| | 4-50 μg/l
1-50 μg/l
1-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 0.5-50 μg/l | 5-50 µg/l Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | | Based on USEPA
524.3 adapted from
Purge and
Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 10-500 mg/l as
CaCO₃ | Bore Waters Other waters (surface waters) Waters for potable and domestic purposes | Mettler Toledo DL50
Titrator | Standard Methods
examination of water
and waste water 24th
edition, 2023.
Documented in-house
method CLS 195 | | 0.005 to 600 mg/L
NH₃-N | Bore waters Other waters (surface waters) Saline waters Sewage Trade Wastes Waste water treatment plants effluents (WWTP) Waters for Potable and Domestic Purposes | Konelab | Konelab CLS 40 Salicylate method based on Methods for the examination of water and associated Materials, Ammonia in waters,1981 | | 0.01 - 1290 mg/L
NH₄ | Bore waters Other waters (surface waters) Saline waters Sewage Trade Wastes Waste water treatment plants effluents (WWTP) | Konelab | Konelab CLS 40
Salicylate method
based on Methods for
the examination of
water and associated
Materials, Ammonia in
waters,1981 | | | | | Waters for Potable
and Domestic
Purposes | | | |-----------------------------|-----|--------------------------|--|---------------------------------|--| | Bicarbonate by calculation | | 10-500 mg/l as
CaCO₃ | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | Mettler Toledo DL50
Titrator | Standard Methods
examination of water
and waste water 24th
edition, 2023.
Documented in-house
method CLS 195 | | Carbonate by calculation | | 10-500 mg/l as
CaCO₃ | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | Mettler Toledo DL50
Titrator | Standard Methods
examination of water
and waste water 24th
edition, 2023.
Documented in-house
method CLS 195 | | Chloride | | 2.0 to 30,000 mg/L
Cl | Bore waters Other waters (surface waters) Saline waters Sewage Trade Wastes Waste water treatment plants effluents (WWTP) Waters for Potable and Domestic Purposes | Konelab | Konelab CLS 36 Colorimetric determination and adapted for discrete analyser Standard Methods 24th edition 2023 (APHA 4500-CL E) | | Colour | | 4.0 - 500 mg/l(PT
Co) | Bore waters Other waters (surface waters) Saline waters Sewage Trade Wastes Waste water treatment plants effluents (WWTP) Waters for Potable and Domestic Purposes | DR5000 | In house method CLS
29 Based on Standard
methods for
examination of water
and waste water 24th
edition, 2023 (APHA
2120 C) | | Dissolved Organic
Carbon | DOC | 1-100 mg/l | Other Water
(Surface Waters)
Waters for Potable | TOC Analyser | CLS 150 Total Organic
Carbon (NPOC) and
Dissolved Organic | | | | | and Domestic
Purposes | | Carbon (DOC) USEPA
Method 415.3 | |------------------------|----------|--|--|-------------------|--| | Fats, oils and greases | | 5 to 10,000 mg/L | Bore waters Other waters (surface waters) Saline waters Sewage Trade Wastes Waste water treatment plants effluents (WWTP) Waters for Potable and Domestic Purposes | Soxhlet extractor | CLS 25 Increase in
weight after sample
filtration and Soxhlet
extraction Standard
Methods for the
Examination of Water
and Wastewater 24th
edition, 2023 (APHA
5520 A and D) | | Fluoride | Fluoride | 0.2 - 1.5 mg/l | Bore waters Other waters (surface waters) Sewage Trade Wastes Waste water treatment plants effluents (WWTP) Waters for Potable and Domestic Purposes | Konelab | Standard Methods for
Examination of Water
and Waste water 24th
ed. 2023. CLS 213 | | Nitrate | | 0.1 - 500 mg/L NO ₃ -N | Bore waters Other waters (surface waters) Saline waters Sewage Trade Wastes Waste water treatment plants effluents (WWTP) Waters for Potable and Domestic Purposes | Konelab | Konelab CLS 39
Calculated value | | Nitrite | | 0.005 to 10 mg/L
NO ₂ -N | Bore waters Other waters (surface waters Saline waters Sewage | Konelab | Konelab CLS 37 Colorimetric determination and adapted for discrete analyser, Standard | | | | Trade Wastes Waste water treatment plants effluents (WWTP) Waters for Potable and Domestic Purposes | | Methods for the Examination of Water and Wastewater 24th edition, 2023 (APHA 4500-NO ₂ B) | |----------------------------|--|--|---------|--| | Nitrite as NO ₂ | 0.017 - 33 mg/L | Bore waters Other waters (surface waters) Saline waters Sewage Trade Wastes Waste water treatment plants effluents (WWTP) Waters for Potable and Domestic Purposes | | Konelab CLS 37 Colorimetric determination and adapted for discrete analyser, Standard Methods for the Examination of Water and Wastewater 24th edition, 2023 (APHA 4500-NO ₂ B) | | Orthophosphate | 0.03 to 6,140 mg/L
PO ₄ | Bore waters Other waters (surface waters) Saline waters Sewage Trade Wastes Waste water treatment plants effluents (WWTP) Waters for Potable and Domestic Purposes | | Konelab CLS 35 Colorimetric determination and adapted for discrete analyser, Standard Methods for the Examination of Water and Wastewater 24th edition, 2023 (APHA 4500-PE) | | Phosphorus | 0.01 to 2,000 mg/L
PO ₄ -P | Bore waters Other waters (surface waters) Saline waters Sewage Trade Wastes Waste water treatment plants effluents (WWTP) Waters for Potable | Konelab | Konelab CLS 35 Colorimetric determination and adapted for discrete analyser, Standard Methods for the Examination of Water and Wastewater 24th edition, 2023 (APHA 4500-PE) | | Sulphate | |----------------| | | | | | | | | | ΓΟΝ | | ON | | | | | | | | | | Total Hardness | | | | | | | | | | I N I' | | Total Nitrogen | | | | | | | and Domestic
Purposes | | | |------------------------------------|--|-------------------------------|--| | 5-3,000 mg/L SO ₄ | Bore waters Other waters (surface waters) Saline waters Sewage Trade Wastes Waste water treatment plants effluents (WWTP) Waters for Potable and Domestic Purposes | Konelab | Konelab CLS 88 Based on Sulphate in waters Effluents and Soils 2nd Edition (1998) Method E. | | 0.1 - 500 mg/L NO ₃ -N | Bore waters Other waters (surface waters) Saline waters Sewage Trade Wastes Waste water treatment plants effluents (WWTP) Waters for Potable and Domestic Purposes | Konelab | Konelab CLS 38 Colorimetric determination and adapted for discrete analyser, Standard Methods for the Examination of Water and Wastewater 24th edition, 2023 (APHA 4500-NO ₃ -H) | | 20-3,000 mg/L
CaCO ₃ | Bore waters Other waters (surface waters) Saline waters Sewage Trade Wastes Waste water treatment plants effluents (WWTP) Waters for Potable and Domestic Purposes | Konelab | Konelab CLS 77 Std
Methods 22nd Ed
2012, Colorimetric
determination and
adapted for discrete
analyser, Standard
Methods for the
Examination of Water
and Wastewater 24th
edition, 2023 (APHA -
2340 C) | | 0.5 - 1000 mg/L | Bore waters Other waters (surface waters) Saline waters | TOC-V CPN/CPN TOC
analyser | CLS 152 based on
ASTM D5176-08
(reapproved 2015) For
total chemically bound | | | | Sewage Trade Wastes Waste water treatment plants effluents (WWTP) Waters for Potable and Domestic Purposes | | nitrogen in water by
pyrolysis and
chemiluminescence
detection | |--------------------------------|---------------------------|--|-------------------------------------|---| | Total Organic Carbon
(NPOC) | 1 - 1000 mg/L | Bore waters Other waters (surface waters) Saline waters Sewage Trade Wastes Waste water treatment plants effluents (WWTP) Waters for Potable and Domestic Purposes | TOC-V CPN/CPN TOC
analyser | CLS 150 Based on
USEPA 415.3 and
Shimadzu User
Manual for TOC V-
CPH/CPN | | Total Phosphorus | 0.05 - 1000 mg/L
PO₄-P | Bore waters Other waters (surface waters) Saline waters Sewage Trade Wastes Waste water treatment plants effluents (WWTP) Waters for Potable and Domestic Purposes | Macherey-Nagel
Spectrophotometer | CLS 151 Based on
ISO 6878-2004 D11
(Macherey Nagel) | | Turbidity | 0.2 - 4000 NTU | Bore waters Other waters (surface waters) Saline waters Sewage Trade Wastes Waste water treatment plants effluents (WWTP) Waters for Potable | Turbidimeter. | In house method CLS
30 Standard Methods
for the Examination of
Water and Wastewater
24th edition, 2023
(APHA 2130 B) | | | | | and
Domestic
Purposes | | | |--|---|------------------|--|-----------------------------------|---| | 767 Physical
test/measurement01 pH | pН | 4-10 | Bore waters Other waters (surface waters) Saline waters Sewage Trade Wastes Waste water treatment plants effluents (WWTP) Waters for Potable and Domestic Purposes | Ph Probe | CLS 26 Measurement of electromotive force by electrode to determine Hydrogen ion concentration, Standard Methods for the Examination of Water and Wastewater 24th edition, 2017 (APHA 4500 - H+B) | | 767 Physical test/measurement02 Conductivity | Conductivity at 20°C | 5 - 12,730 μS/cm | Bore waters Other waters (surface waters) Saline waters Sewage Trade Wastes Waste water treatment plants effluents (WWTP) Waters for Potable and Domestic Purposes | Conductivity Meter | CLS 67 method based
on Standard methods
for the examination of
water and wastewater
24th edition, 2023
(APHA-2510 B) | | 767 Physical
test/measurement03
Suspended Solids | Suspended Solids | 2 to 15,000 mg/L | Bore waters Other waters (surface waters) Saline waters Sewage Trade Wastes Waste water treatment plants effluents (WWTP) Waters for Potable and Domestic Purposes | | CLS 13 Based on
Standard Methods for
the Examination of
Water and Wastewater
24th edition, 2023 .
Increase in sample
filter Dried at 103 -
105°C. (APHA 2540
D) | | 798 Sampling | Water Sampling of
Lakes, Rivers and
Lagoons (with
subsequent analysis by | | Other waters
(surface waters) | Grab, Rod, Bucket and
Van Dorn | CLS WI 135 Based on
ISO 5667-4:2016 and
ISO 5667-6:2014 | | ISO accredited laboratory) | | | |----------------------------|--|--| |----------------------------|--|--| ## **Rosmuc Site**, Conemarra Co Galway ## **Chemical Testing** ## Category: A | Chemistry Field - Tests | Test name | Analyte | Range of measurement | Matrix | Equipment/technique | Standard reference/SOP | |--|--------------|---|--|--|---------------------|------------------------| | 766 Environmental testing (inc waters)04 Organic | VOC by GCMSD | Chloroform
Bromodichloromethane
Dibromochloromethane
Bromoform | 0.5 - 200 ug/l
0.5 - 200 ug/l
2 - 200 ug/l
2 - 200 ug/l
2 - 200 ug/l | Surface Water
Surface Water
Surface Water
Surface Water
Ground Water
Ground Water
Ground Water
Ground Water
Drinking Water | | CLS 183/USEPA
524.3 |