Schedule of Accreditation

Organisation Name Euro Environmental Management Ltd

Trading As Fitz Scientific

INAB Reg No 389T

Contact Name Damien O'Reilly

Address Unit 35 Boyne Business Park, Drogheda, Louth,

A92 D52D

Contact Phone No 041984540

Email doreilly@fitzsci.ie

Website https://www.fitzsci.ie

Accreditation Standard EN ISO/IEC 17025 T

Standard Version 2017

Date of award of accreditation 02/06/2021

Scope Classification Biological and veterinary testing

Scope Classification Chemical testing

Services available to the public¹ Yes

¹ Refer to document on interpreting INAB Scopes of Accreditation

	Sites from which accredited services are delivered			
	(the detail of the accredited services delivered at each site are on the Scope of Accreditation)			
	Name Address			
1	1 Head Office Unit 35a, , Boyne Business Park, Drogheda, Louth, Ireland, A92 D52D			
2	2 Head Office Unit 1 Boyne Business Park, Drogheda, Louth			
3	3 Fitz Scientific Unit 1, Boyne Business Park, Drogheda, Louth, Ireland, A92 Y397			

Scope of Accreditation

Fitz Scientific

Biological and Veterinary Testing

Category: A

Biology/veterinary field - Tests	Test name	Technique	Matrix	Equipment	Std. reference
803 Culture of organisms in liquid or agar based culture media with visual or instrument monitoring for growth01 Culture of bacteria	Clostridium perfringens (and spores), presumptive	Isolation and enumeration by membrane filtration	Potable waters, well waters, bottled mineral waters	Membrane filtration unit	Based on Environment Agency -The Microbiology of Drinking Water (2021) - Part 6 method B using SOP 161
	Detection and confirmation of Salmonella species	enrichment in broth and plating on to selective agar. Confirmation of any presumptive Salmonella spp. is by biochemical - Microbact, and serological testing.	Cereals and bakery products, Cocoa and cocoa preparations, Confectionery, Dairy products, Egg products, Fats and oils, Fish, shellfish and molluscs, Foods, stockfoods and their additives, Fruit and vegetables, Soups, Herbs and spices, Ices and desserts, Meat and meat products, game, poultry, Nuts and nut products, snacks, Pet foods, Prepared dishes, Soup, broths and sauces, Surfaces, Animal feeds, Product contact surfaces.	Solus Elisa (Optima)	Solus ELISA (Optima) using XLD\BSA and SOP 455

Detection, confirmation and identification of Listeria species	N/A - submission is to verify performance of alternative media (PALCAM)	As accredited	As accredited	As accredited
	Selective pre- enrichment followed by selective enrichment in broth and plating on selective agar. Confirmation of any presumptive Listeria spp. is by biochemical testing - Microbact	Cereals and bakery products, Cocoa and cocoa preparations, Confectionery, Dairy products, Egg products, Fish, shellfish and molluscs, Foods, stockfoods and their additives, Fruit and vegetables, Soups, Herbs and spices, Ices and desserts, Meat and meat products, game, poultry, Nuts and nut products, snacks, Pet foods, Prepared dishes, Soup, broths and sauces, Surfaces, Animal feeds, Product contact surfaces.	Solus Elisa	Solus ELISA using SOP 456
Enterococci	Isolation and enumeration by membrane filtration with confirmation by biochemical test	Potable waters, well waters, bottled mineral waters	Membrane filtration unit	Based on UK Environment Agency - The Microbiology of Drinking Water (2012) - Part 5 using SOP 153
Enumeration of Bacillus cereus (presumptive)	Isolation and enumeration by spread plate method	Cereals and bakery products, Cocoa and cocoa preparations, Dairy products, Egg products, Foods, stockfoods and their additives, Soups, Ices and desserts, Meat and meat products, game, poultry, Nuts and nut products, snacks, Prepared dishes, Soup, broths and sauces, Surfaces, Product contact surfaces.	Spread plate	Based on BS EN ISO 7932:2004 using spread plate using SOP 478
Enumeration of coagulase positive staphylococci (Staphylococcus aureus and other species)	Isolation and enumeration by spread plate method and confirmation by Coagulase Test	Cereals and bakery products, Cocoa and cocoa preparations, Confectionery, Dairy products, Egg products, Fish, shellfish and molluscs, Foods, stockfoods and their additives, Fruit and vegetables, Soups, Herbs and spices, Ices and desserts, Meat	Spread plate	BS EN ISO 6888- 1:2021+A1:2023 using spread plate, SOP 465

		and meat products, game, poultry,		
		Nuts and nut products, snacks, Pet foods, Prepared dishes, Soup, broths and sauces, Surfaces, Animal feeds, Product contact surfaces.		
Enumeration of coliform organisms (presumptive)	Isolation and enumeration by pour plate method	Dairy products, Cereals and bakery products, Cocoa and cocoa preparations, Confectionery, Dairy products, Egg products, Fish, shellfish and molluscs, Foods, stockfoods and their additives, Fruit and vegetables, Soups, Herbs and spices, Ices and desserts, Meat and meat products, game, poultry, Nuts and nut products, snacks, Pet foods, Prepared dishes, Soup, broths and sauces, Surfaces, Animal feeds, Product contact surfaces.	Pour plate	Based on BS EN ISO 4832:2006 using pour plate using SOP 451
Enumeration of Enterobacteriaceae (presumptive)		Cereals and bakery products, Cocoa and cocoa preparations, Confectionery, Dairy products, Egg products, Fish, shellfish and molluscs, Foods, stockfoods and their additives, Fruit and vegetables, Soups, Herbs and spices, Ices and desserts, Meat and meat products, game, poultry, Nuts and nut products, snacks, Pet foods, Prepared dishes, Soup, broths and sauces, Surfaces, Animal feeds, Product contact surfaces.	Pour plate	Based on BS EN ISO 21528-2:2017 using pour plate using SOP 454
Enumeration of Listeria species	Isolation and enumeration by spread plate method and confirmation by biochemical testing - Microbact	Cereals and bakery products, Cocoa and cocoa preparations, Confectionery, Dairy products, Egg products, Fish, shellfish and molluscs, Foods, stockfoods and their additives, Fruit and vegetables, Soups, Herbs and spices, Ices and desserts, Meat and meat products, game, poultry,	Spread plate	Based on BS EN ISO 11290-2: 2017 with resuscitation stage using spread plate using SOP 480

		Nuts and nut products, snacks, Pet foods, Prepared dishes, Soup, broths and sauces, Surfaces, Animal feeds, Product contact surfaces.		
Enumeration of microorganisms – aerobic colony count at 30°C	Isolation and enumeration by pour plate method	Cereals and bakery products, Cocoa and cocoa preparations, Confectionery, Dairy products, Egg products, Fats and oils, Fish, shellfish and molluscs, Foods, stockfoods and their additives, Fruit and vegetables, Soups, Herbs and spices, Ices and desserts, Meat and meat products, game, poultry, Nuts and nut products, snacks, Pet foods, Prepared dishes, Soup, broths and sauces, Surfaces, Animal feeds, Product contact surfaces.	Pour plate	Based on BS EN ISO 4833- 1:2013 using single pour plate using SOP 457
Enumeration of Pseudomonas spp.(presumptive)	Isolation and enumeration by spread plate method	Cereals and bakery products, Cocoa and cocoa preparations, Dairy products, Egg products, Meat and meat products, game and poultry, Foods, stockfoods and their additives, Soups, Ices and desserts, Meat and meat products, game, poultry, Nuts and nut products, snacks, Prepared dishes, Soup, broths and sauces, Surfaces, Product contact surfaces.	Spread plate	Based on BS EN ISO 13720:2010 using spread plate using SOP 496
Enumeration of yeasts and moulds in products with water activity > 0.95		Cereals and bakery products, Confectionery, Dairy products, Egg products, Fats and oils, Fish, shellfish and molluscs, Foods, stockfoods and their additives, Fruit and vegetables, Soups, Ices and desserts, Meat and meat products, game, poultry, Pet foods, Prepared dishes, Soup, broths and sauces, Surfaces, Animal feeds, Product contact surfaces.	Spread plate	Based on BS ISO 21527- 1:2008 using spread plate using SOP 466

Enumeration of yeasts and moulds in products with water activity ≤ 0.95		Cereals and bakery products, Cocoa and cocoa preparations, Confectionery, Dairy products, Egg products, Spices, Nuts and nut products, snacks	Spread plate	Based on BS ISO 21527- 2:2008 using spread plate using SOP 479
Enumeration of β-glucuronidase positive E. coli	Isolation and enumeration by pour plate method	Cereals and bakery products, Cocoa and cocoa preparations, Confectionery, Dairy products, Egg products, Fish, shellfish and molluscs, Foods, stockfoods and their additives, Fruit and vegetables, Soups, Herbs and spices, Ices and desserts, Meat and meat products, game, poultry, Nuts and nut products, snacks, Pet foods, Prepared dishes, Soup, broths and sauces, Surfaces, Animal feeds, Product contact surfaces.	Pour plate	Based on BS EN ISO 16649-2:2001 using pour plate using SOP 453
Listeria spp.	Isolation by real time PCR using culture and enrichment with confirmation by biochemical testing	Cereals and bakery products, Confectionery, Egg products, Prepared meat products, Environmental Swabs	Applied Biosystems™ QuantStudio™ 5 Real- Time PCR Instrument, SureTect™ Listeria species PCR Assay, Stick Swab / Neutralising Buffer	Listeria species PCR Assay, Incubator, autoclave, thermal cycler, balance, PCR Assay workflow certified by AFNOR UNI 03/09-11/13 with in-house method for isolation and confirmation, AOAC 071304 using SOP 592
Pseudomonas aeruginosa, presumptive	Isolation and enumeration by membrane filtration	Potable waters, well waters, bottled mineral waters	Membrane filtration unit	Based on UK Environment Agency - The Microbiology of Drinking Water (2015) - Part 8 using SOP 446
Salmonella	Isolation by real time PCR and confirmation by biochemical testing	Raw ground beef, pork, frankfurters, raw chicken, environmental swabs	Applied Biosystems™ QuantStudio™ 5 Real- Time PCR Instrument, SureTect™ Salmonella species PCR Assay, Incubator, autoclave, thermal cycler, balance	Alternative method - Thermo Scientific SureTectTM Salmonella species PCR Assay workflow certified by AFNOR UNI 03/07-11/13, AOAC 051303 using MKTTn/RVS + XLD/BSA for raw meat (10 g, 25 g), SOP 559

Isolation and enumeration by spread plate method	Potable waters, well waters, bottled mineral waters		Based on UK Environment Agency - The Microbiology of Drinking Water (2020) - Part 7 using SOP 493
	Potable waters, well waters, bottled mineral waters	unit	Based on UK Environment Agency - The Microbiology of Drinking Water (2016) - Part 4, with confirmation by TNA using SOP 157

Fitz Scientific

Chemical Testing

Category: A

Chemistry Field - Tests	Test name	Analyte	Range of measurement	Matrix	Equipment/technique	Standard reference/SOP
751 Food testing02 Nutritional analysis	Determination of Ash	Ash	0.81 - 8.19%	Petfood, Cereals, Nutritional Supplements & Powdered Infant Baby Powder, Vegetables & Fruit, Confectionery, Fish, Meat, Dairy Products, Nuts and Nut Products, General Foods, Bread and Bakery Products, Soups and Sauces, Prepared Foods - Ready to Eat Meals		SOP 490 Mortensen & Wallin: J. Assoc. Off. Anal. Chem Vol 72, No 3 1989
	Determination of Carbohydrate in Food	Carbohydrate	0.01 - 100.00%	Petfood, Powdered Milk, Cereals, Nutritional Supplements and Infant Baby Powder, Vegetables, Confectionery, Fish, Meat, Dairy Products, Bread and Bakery Products, General Foods, Fruit, Soups and	By Calculation	SOP 488 FAO 1998

			Sauces, Nuts and Nut Products, Prepared Foods - Ready to Eat Meals, Milk		
Determination of Energy in Food - By Calculation	Energy	0.01 - 100.00%	Petfood, Powdered Milk, Cereals, Nutritional Supplements and Infant Baby Powder, Vegetables, Confectionery, Fish, Meat, Dairy Products, Bread and Bakery Products, General Foods, Fruit, Soups and Sauces, Nuts and Nut Products, Prepared Foods - Ready to Eat Meals, Milk	By Calculation	SOP 488 Carbohydrate Values in Food SOP 573 Reg EU 1169/2011 of European Parliament and Council of 25 October 2011.
Determination of Fatty Acid Methyl Esters	Methyl Arachidiate (C20:0)	0.35 to 100g/100g	Soups & Sauces, Pet food, Fruit & Veg, Cereal Dairy, Confectionary, Prepared Dishes, Infant Formula, Fish, Meat, Nuts & Nut Products	GC-FID	AOAC Method 2012.13 using CEM Rapid FAME's Analysis Method by SOP 564
	Methyl Behenate (C22:0)	0.35 to 100g/100g	Soups & Sauces, Pet food, Fruit & Veg, Cereal Dairy, Confectionary, Prepared Dishes, Infant Formula, Fish, Meat, Nuts & Nut Products	GC-FID	AOAC Method 2012.13 using CEM Rapid FAME's Analysis Method by SOP 564

Methyl Butyrate (C4:0)	0.35 to 100g/100g	Soups & Sauces, Pet food, Fruit & Veg, Cereal Dairy, Confectionary, Prepared Dishes, Infant Formula, Fish, Meat, Nuts & Nut Products	GC-FID	AOAC Method 2012.13 using CEM Rapid FAME's Analysis Method by SOP 564
Methyl cis-10 heptadecenoate (C17:1)	0.35 to 100g/100g	Soups & Sauces, Pet food, Fruit & Veg, Cereal Dairy, Confectionary, Prepared Dishes, Infant Formula, Fish, Meat, Nuts & Nut Products	GC-FID	AOAC Method 2012.13 using CEM Rapid FAME's Analysis Method by SOP 564
Methyl cis-10- pentadecanoate (C15:1)	0.35 to 100g/100g	Soups & Sauces, Pet food, Fruit & Veg, Cereal Dairy, Confectionary, Prepared Dishes, Infant Formula, Fish, Meat, Nuts & Nut Products	GC-FID	AOAC Method 2012.13 using CEM Rapid FAME's Analysis Method by SOP 564
Methyl cis-11,14,17- eicosatrienoate (C20:3)	0.35 to 100g/100g	Soups & Sauces, Pet food, Fruit & Veg, Cereal Dairy, Confectionary, Prepared Dishes, Infant Formula, Fish, Meat, Nuts & Nut Products	GC-FID	AOAC Method 2012.13 using CEM Rapid FAME's Analysis Method by SOP 564
Methyl cis-11,14- eicosadienoate (C20:2)	0.35 to 100g/100g	Soups & Sauces, Pet food, Fruit & Veg, Cereal Dairy, Confectionary, Prepared Dishes, Infant Formula, Fish, Meat, Nuts & Nut Products	GC-FID	AOAC Method 2012.13 using CEM Rapid FAME's Analysis Method by SOP 564
Methyl cis-11- eicosanoate (C20:1)	0.35 to 100g/100g	Soups & Sauces, Pet food, Fruit &	GC-FID	AOAC Method 2012.13 using

		Veg, Cereal Dairy, Confectionary, Prepared Dishes, Infant Formula, Fish, Meat, Nuts & Nut Products		CEM Rapid FAME's Analysis Method by SOP 564
Methyl cis-13,16- docosadienoate (C22:2)	0.35 to 100g/100g	Soups & Sauces, Pet food, Fruit & Veg, Cereal Dairy, Confectionary, Prepared Dishes, Infant Formula, Fish, Meat, Nuts & Nut Products	GC-FID	AOAC Method 2012.13 using CEM Rapid FAME's Analysis Method by SOP 564
Methyl cis-5,8,11,14- eicosatetraonoate (C20:4)	0.35 to 100g/100g	Soups & Sauces, Pet food, Fruit & Veg, Cereal Dairy, Confectionary, Prepared Dishes, Infant Formula, Fish, Meat, Nuts & Nut Products	GC-FID	AOAC Method 2012.13 using CEM Rapid FAME's Analysis Method by SOP 564
Methyl cis-8,11,14- eicosatrienoate (C20:3)	0.35 to 100g/100g	Soups & Sauces, Pet food, Fruit & Veg, Cereal Dairy, Confectionary, Prepared Dishes, Infant Formula, Fish, Meat, Nuts & Nut Products	GC-FID	AOAC Method 2012.13 using CEM Rapid FAME's Analysis Method by SOP 564
Methyl cis-9-oleate (C18:1)	0.35 to 100g/100g	Soups & Sauces, Pet food, Fruit & Veg, Cereal Dairy, Confectionary, Prepared Dishes, Infant Formula, Fish, Meat, Nuts & Nut Products	GC-FID	AOAC Method 2012.13 using CEM Rapid FAME's Analysis Method by SOP 564
Methyl Decanoate (C10:0)	0.35 to 100g/100g	Soups & Sauces, Pet food, Fruit & Veg, Cereal Dairy, Confectionary,	GC-FID	AOAC Method 2012.13 using CEM Rapid FAME's

		Prepared Dishes, Infant Formula, Fish, Meat, Nuts & Nut Products		Analysis Method by SOP 564
Methyl docosahexaenoate (C22:6) (DHA)	0.35 to 100g/100g	Soups & Sauces, Pet food, Fruit & Veg, Cereal Dairy, Confectionary, Prepared Dishes, Infant Formula, Fish, Meat, Nuts & Nut Products	GC-FID	AOAC Method 2012.13 using CEM Rapid FAME's Analysis Method by SOP 564
Methyl eicosapentaenoate (C20:5) (EPA)	0.35 to 100g/100g	Soups & Sauces, Pet food, Fruit & Veg, Cereal Dairy, Confectionary, Prepared Dishes, Infant Formula, Fish, Meat, Nuts & Nut Products	GC-FID	AOAC Method 2012.13 using CEM Rapid FAME's Analysis Method by SOP 564
Methyl Erucate (C22:1)	0.35 to 100g/100g	Soups & Sauces, Pet food, Fruit & Veg, Cereal Dairy, Confectionary, Prepared Dishes, Infant Formula, Fish, Meat, Nuts & Nut Products	GC-FID	AOAC Method 2012.13 using CEM Rapid FAME's Analysis Method by SOP 564
Methyl heneicosanoate (C21:0)	0.35 to 100g/100g	Soups & Sauces, Pet food, Fruit & Veg, Cereal Dairy, Confectionary, Prepared Dishes, Infant Formula, Fish, Meat, Nuts & Nut Products	GC-FID	AOAC Method 2012.13 using CEM Rapid FAME's Analysis Method by SOP 564
Methyl Heptadecanoate (C17:0)	0.35 to 100g/100g	Soups & Sauces, Pet food, Fruit & Veg, Cereal Dairy, Confectionary, Prepared Dishes, Infant Formula,	GC-FID	AOAC Method 2012.13 using CEM Rapid FAME's Analysis Method by SOP 564

		Fish, Meat, Nuts & Nut Products		
Methyl Hexanoate (C6:0)	0.35 to 100g/100g	Soups & Sauces, Pet food, Fruit & Veg, Cereal Dairy, Confectionary, Prepared Dishes, Infant Formula, Fish, Meat, Nuts & Nut Products	GC-FID	AOAC Method 2012.13 using CEM Rapid FAME's Analysis Method by SOP 564
Methyl Laurate (C12:0)	0.35 to 100g/100g	Soups & Sauces, Pet food, Fruit & Veg, Cereal Dairy, Confectionary, Prepared Dishes, Infant Formula, Fish, Meat, Nuts & Nut Products	GC-FID	AOAC Method 2012.13 using CEM Rapid FAME's Analysis Method by SOP 564
Methyl Lignocerate (C24:0)	0.35 to 100g/100g	Soups & Sauces, Pet food, Fruit & Veg, Cereal Dairy, Confectionary, Prepared Dishes, Infant Formula, Fish, Meat, Nuts & Nut Products	GC-FID	AOAC Method 2012.13 using CEM Rapid FAME's Analysis Method by SOP 564
Methyl Linoleate (C18:2)	0.35 to 100g/100g	Soups & Sauces, Pet food, Fruit & Veg, Cereal Dairy, Confectionary, Prepared Dishes, Infant Formula, Fish, Meat, Nuts & Nut Products	GC-FID	AOAC Method 2012.13 using CEM Rapid FAME's Analysis Method by SOP 564
Methyl Linolelaidate (C18:2)	0.35 to 100g/100g	Soups & Sauces, Pet food, Fruit & Veg, Cereal Dairy, Confectionary, Prepared Dishes, Infant Formula, Fish, Meat, Nuts & Nut Products	GC-FID	AOAC Method 2012.13 using CEM Rapid FAME's Analysis Method by SOP 564

Methyl Linolenate (C18:3) (ALA)	0.35 to 100g/100g	Soups & Sauces, Pet food, Fruit & Veg, Cereal Dairy, Confectionary, Prepared Dishes, Infant Formula, Fish, Meat, Nuts & Nut Products	GC-FID	AOAC Method 2012.13 using CEM Rapid FAME's Analysis Method by SOP 564
Methyl Myristate (C14:0)	0.35 to 100g/100g	Soups & Sauces, Pet food, Fruit & Veg, Cereal Dairy, Confectionary, Prepared Dishes, Infant Formula, Fish, Meat, Nuts & Nut Products	GC-FID	AOAC Method 2012.13 using CEM Rapid FAME's Analysis Method by SOP 564
Methyl Myristoleate (C14:1)	0.35 to 100g/100g	Soups & Sauces, Pet food, Fruit & Veg, Cereal Dairy, Confectionary, Prepared Dishes, Infant Formula, Fish, Meat, Nuts & Nut Products	GC-FID	AOAC Method 2012.13 using CEM Rapid FAME's Analysis Method by SOP 564
Methyl Nervonate (C24:1)	0.35 to 100g/100g	Soups & Sauces, Pet food, Fruit & Veg, Cereal Dairy, Confectionary, Prepared Dishes, Infant Formula, Fish, Meat, Nuts & Nut Products	GC-FID	AOAC Method 2012.13 using CEM Rapid FAME's Analysis Method by SOP 564
Methyl Octanoate (C8:0)	0.35 to 100g/100g	Soups & Sauces, Pet food, Fruit & Veg, Cereal Dairy, Confectionary, Prepared Dishes, Infant Formula, Fish, Meat, Nuts & Nut Products	GC-FID	AOAC Method 2012.13 using CEM Rapid FAME's Analysis Method by SOP 564
Methyl Palmitate (C16:0)	0.35 to 100g/100g	Soups & Sauces, Pet food, Fruit &	GC-FID	AOAC Method 2012.13 using

		Veg, Cereal Dairy, Confectionary, Prepared Dishes, Infant Formula, Fish, Meat, Nuts & Nut Products		CEM Rapid FAME's Analysis Method by SOP 564
Methyl Palmitoleate (C16:1)	0.35 to 100g/100g	Soups & Sauces, Pet food, Fruit & Veg, Cereal Dairy, Confectionary, Prepared Dishes, Infant Formula, Fish, Meat, Nuts & Nut Products	GC-FID	AOAC Method 2012.13 using CEM Rapid FAME's Analysis Method by SOP 564
Methyl Pentadecanoate (C15:0)	0.35 to 100g/100g	Soups & Sauces, Pet food, Fruit & Veg, Cereal Dairy, Confectionary, Prepared Dishes, Infant Formula, Fish, Meat, Nuts & Nut Products	GC-FID	AOAC Method 2012.13 using CEM Rapid FAME's Analysis Method by SOP 564
Methyl Stearate (C18:0)	0.35 to 100g/100g	Soups & Sauces, Pet food, Fruit & Veg, Cereal Dairy, Confectionary, Prepared Dishes, Infant Formula, Fish, Meat, Nuts & Nut Products	GC-FID	AOAC Method 2012.13 using CEM Rapid FAME's Analysis Method by SOP 564
Methyl trans-9-eladiate (C18:1)	0.35 to 100g/100g	Soups & Sauces, Pet food, Fruit & Veg, Cereal Dairy, Confectionary, Prepared Dishes, Infant Formula, Fish, Meat, Nuts & Nut Products	GC-FID	AOAC Method 2012.13 using CEM Rapid FAME's Analysis Method by SOP 564
Methyl Tricosanoate (C23:0)	0.35 to 100g/100g	Soups & Sauces, Pet food, Fruit & Veg, Cereal Dairy, Confectionary,	GC-FID	AOAC Method 2012.13 using CEM Rapid FAME's

		Prepared Dishes, Infant Formula, Fish, Meat, Nuts & Nut Products		Analysis Method by SOP 564
Methyl Tridecanoate (C13:0)	0.35 to 100g/100g	Soups & Sauces, Pet food, Fruit & Veg, Cereal Dairy, Confectionary, Prepared Dishes, Infant Formula, Fish, Meat, Nuts & Nut Products	GC-FID	AOAC Method 2012.13 using CEM Rapid FAME's Analysis Method by SOP 564
Methyl Undecanoate (C11:0)	0.35 to 100g/100g	Soups & Sauces, Pet food, Fruit & Veg, Cereal Dairy, Confectionary, Prepared Dishes, Infant Formula, Fish, Meat, Nuts & Nut Products	GC-FID	AOAC Method 2012.13 using CEM Rapid FAME's Analysis Method by SOP 564
Methyl-gamma- linolenate (C18:3)	0.35 to 100g/100g	Soups & Sauces, Pet food, Fruit & Veg, Cereal Dairy, Confectionary, Prepared Dishes, Infant Formula, Fish, Meat, Nuts & Nut Products	GC-FID	AOAC Method 2012.13 using CEM Rapid FAME's Analysis Method by SOP 564
Mono-unsaturated Fat (Food)	0.35 to 100g/100g	Soups & Sauces, Pet food, Fruit & Veg, Cereal Dairy, Confectionary, Prepared Dishes, Infant Formula, Fish, Meat, Nuts & Nut Products	GC-FID	AOAC Method 2012.13 using CEM Rapid FAME's Analysis Method by SOP 564
Omega-3 Fatty Acids	0.35 to 100g/100g	Soups & Sauces, Pet food, Fruit & Veg, Cereal Dairy, Confectionary, Prepared Dishes, Infant Formula,	GC-FID	AOAC Method 2012.13 using CEM Rapid FAME's Analysis Method by SOP 564

		Fish, Meat, Nuts & Nut Products		
Omega-6 Fatty Acids	0.35 to 100g/100g	Soups & Sauces, Pet food, Fruit & Veg, Cereal Dairy, Confectionary, Prepared Dishes, Infant Formula, Fish, Meat, Nuts & Nut Products	GC-FID	AOAC Method 2012.13 using CEM Rapid FAME's Analysis Method by SOP 564
Omega-9 Fatty Acids	0.35 to 100g/100g	Soups & Sauces, Pet food, Fruit & Veg, Cereal Dairy, Confectionary, Prepared Dishes, Infant Formula, Fish, Meat, Nuts & Nut Products	GC-FID	AOAC Method 2012.13 using CEM Rapid FAME's Analysis Method by SOP 564
Poly-unsaturated Fat (Food)	0.35 to 100g/100g	Soups & Sauces, Pet food, Fruit & Veg, Cereal Dairy, Confectionary, Prepared Dishes, Infant Formula, Fish, Meat, Nuts & Nut Products	GC-FID	AOAC Method 2012.13 using CEM Rapid FAME's Analysis Method by SOP 564
Saturated Fat (Food)	0.35 to 100g/100g	Soups & Sauces, Pet food, Fruit & Veg, Cereal Dairy, Confectionary, Prepared Dishes, Infant Formula, Fish, Meat, Nuts & Nut Products	GC-FID	AOAC Method 2012.13 using CEM Rapid FAME's Analysis Method by SOP 564
Trans Fatty Acids	0.35 to 100g/100g	Soups & Sauces, Pet food, Fruit & Veg, Cereal Dairy, Confectionary, Prepared Dishes, Infant Formula, Fish, Meat, Nuts & Nut Products	GC-FID	AOAC Method 2012.13 using CEM Rapid FAME's Analysis Method by SOP 564

Determination of Moisture	Moisture	1.27 - 86.91%	Petfood, Cereals, Nutritional Supplements & Powdered Infant Baby Powder, Vegetables & Fruit, Confectionery, Fish, Meat, Dairy Products, Bread and Bakery Products, General Foods, Soups & Sauces, Prepared Foods - Ready to Eat Meals	Loss by drying	SOP 489 AOAC 984.25 S. S Nielsen Compositional Analysis of Foods
Determination of Nitrate in Food	Nitrate as NaNO3	15 to 2740 mg/kg (extended by dilution)	Meat and meat products, Fish and fish products, Dairy and dairy products, Baby food, Infant formula, Fruit and vegetables	IC with autosampler, conductivity detector	Using SOP 607
	Nitrate as NO3	11 to 10000 mg/kg (extended by dilution)	Fruit and vegetables	IC with autosampler, conductivity detector	Using SOP 607
		2.8 to 2000 mg/kg (extended by dilution)	Meat and meat products, Fish and fish products, Dairy and dairy products, Baby food, Infant formula	IC with autosampler, conductivity detector	Using SOP 607
Determination of Nitrite in Food	Nitrite as NaNO2 (extended by dilution)	9 to 1500 mg/kg (extended by dilution)	Meat and meat products, Fish and fish products, Dairy and dairy products, Baby food, Infant formula, Fruit and vegetables	IC with autosampler, conductivity detector	Using SOP 607

	Nitrite as NO2	6 to 1000 mg/kg (extended by dilution)	Meat and meat products, Fish and fish products, Dairy and dairy products, Baby food, Infant formula, Fruit and vegetables	IC with autosampler, conductivity detector	Using SOP 607
Determination of Protein	Protein	0.24 - 49.17%	Petfood, Cereals, Nutritional Supplements, Infant Baby Powder,, Vegetables & Fruit, Confectionery, Fish, Meat, Dairy Products, Nuts and Nut Products, General Foods, Soups & Sauces, Prepared Foods - Ready to Eat Meals, Fish Food	Kjeldahl nitrogen method - digestion, distillation and titremetry	SOP 487 AOAC Vol 82 No 6 1999
Determination of Sugars in Foodstuffs	Fructose	0.09 to 100g/100g	Soups and Sauces, Pet food, Fruit and Veg., Cereals, Non- Alcoholic Beverages, Confectionary, Prepared Dishes, Infant Formula, Lactose Free Infant Formula, Dessert and Ices	IC	High performance anion exchange chromatography with pulsed amperometric detection method (HPAEC-PAD) using SOP 562
	Galactose	0.03 to 100g/100g	Soups and Sauces, Pet food, Fruit and Veg., Cereals, Non- Alcoholic Beverages, Confectionary,	IC	High performance anion exchange chromatography with pulsed amperometric detection method (HPAEC-PAD) using SOP 562

		Prepared Dishes, Infant Formula, Lactose Free Infant Formula, Dessert and Ices		
Glucose	0.06 to 100g/100g	Soups and Sauces, Pet food, Fruit and Veg., Cereals, Non- Alcoholic Beverages, Confectionary, Prepared Dishes, Infant Formula, Lactose Free Infant Formula, Dessert and Ices	IC	High performance anion exchange chromatography with pulsed amperometric detection method (HPAEC-PAD) using SOP 562
Maltose	0.03 to 100g/100g	Soups and Sauces, Pet food, Fruit and Veg., Cereals, Non- Alcoholic Beverages, Confectionary, Prepared Dishes, Infant Formula, Lactose Free Infant Formula, Dessert and Ices	IC	High performance anion exchange chromatography with pulsed amperometric detection method (HPAEC-PAD) using SOP 562
Sucrose	0.03 to 100g/100g	Soups and Sauces, Pet food, Fruit and Veg., Cereals, Non- Alcoholic Beverages, Confectionary, Prepared Dishes, Infant Formula, Lactose Free Infant Formula, Dessert and Ices	IC	High performance anion exchange chromatography with pulsed amperometric detection method (HPAEC-PAD) using SOP 562

	Total Sugars	0.03 to 100g/100g	Soups and Sauces, Pet food, Fruit and Veg., Cereals, Non- Alcoholic Beverages, Confectionary, Prepared Dishes, Infant Formula, Lactose Free Infant Formula, Dessert and Ices	IC	High performance anion exchange chromatography with pulsed amperometric detection method (HPAEC-PAD) using SOP 562
Determination of Sulphur Dioxide in Food	Sulphur Dioxide	10 to 2010 mg/kg	Meat and meat products, Fish and fish products, Fruit, Vegetables, Alcoholic beverages, Soups and sauces, Cereal and cereal based products, Confectionery	VELP distillation, titrimetry	AOAC method 990.28 using SOP 607
Determination of Total Dietary Fibre	Dietary Fibre	0.73 to 41.33%	Soups and Sauces, Pet food, Fruit and Veg., Cereals, Prepared Dishes, General Foods	Fibre Analyser	By SOP 561 using AnkomTDF Dietary Fibre Analyzer Operators Manual. AOAC 991.43
Determination of Total Fat	Fat	0.03 - 100.00%	Petfood, Powdered Milk, Cereals, Nutritional Supplements and Infant Baby Powder, Vegetables, Confectionery, Fish, Meat, Dairy Products, Bread and Bakery Products, General Foods, Fruit, Soups & Sauces,	Total Fat using Nuclear Magnetic Resonance	SOP 486 AOAC 2008.06

-				<u> </u>		
				Nuts and Nut Products, Prepared Foods - Ready to Eat Meals, milk		
	Determination of Water Activity	Water	0.05 - 0.99 aW	Products, Cocoa & Cocoa	measurement), Knife Mill, Oven	Using SOP 570 with method based on ISO 18787:2017 and SN 0180-1992
751 Food testing06 Allergens	Determination of Gluten in Foodstuffs (excel. fermented products)	Gluten	6 to 80 mg/Kg	Starch, pseudo cereals, legumes, soy, spices and their mixtures, mayonnaise, sauces, vegetables, cereals and cereal products, potatoes and potato products, egg products / ice cream / milk and their products, cheese and cheese products, spread, soft drinks, vinegar,	Ridasrceen Gliadin (R7001 kit) R5 Sandwich Elisa	AOAC Official Method of Analysis (OMA 2012.01) cert. 120601 using SOP 615

				fruits, fish and fish products, meat and meat products, vegetarian meat alternatives, confectionery		
752 Chemical residue testing01 Drugs and drug metabolites	Determination of 17b Estradiol in Waters	17b Estradiol	0.07 to 2.4 ng/L	Groundwater	Offline SPE coupled with LCMSMS	Based on EPA Method 539 Determination of Hormones in Drinking Water using SOP 618
			0.09 to 2.4 ng/L	Surface Water	Offline SPE coupled with LCMSMS	Based on EPA Method 539 Determination of Hormones in Drinking Water using SOP 618
			0.26 to 2.4 ng/L	Potable Water	Offline SPE coupled with LCMSMS	Based on EPA Method 539 Determination of Hormones in Drinking Water using SOP 618
752 Chemical residue testing02 Elements	Determination of Sugars in Foodstuffs	Lactose	0.03 to 100g/100g	Soups and Sauces, Pet food, Fruit and Veg., Cereals, Non- Alcoholic Beverages, Confectionary, Prepared Dishes, Infant Formula, Lactose Free Infant Formula, Dessert and Ices	IC	High performance anion exchange chromatography with pulsed amperometric detection method (HPAEC-PAD) using SOP 562
752 Chemical residue testing04 Pesticide residues	Determination of Aminomethylphosphonic acid (AMPA)	AMPA	0.002 to 0.200 ug/L	Groundwater	spectrometric detection (MSD) in	Based o ISO 16308:2014 - determination of glyphosate and AMPA using high pressure liquid chromatography and tandem MS detection along with in

					house development with Manufacturer Application Engineer using SOP 579
Determination of Glyphosate			0.007 to 0.200 ug/L		Based o ISO 16308:2014 - determination of glyphosate and AMPA using high pressure liquid chromatography and tandem MS detection along with in house development with Manufacturer Application Engineer using SOP 579
			0.01 to 0.200 ug/L	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Based o ISO 16308:2014 - determination of glyphosate and AMPA using high pressure liquid chromatography and tandem MS detection along with in house development with Manufacturer Application Engineer using SOP 579
		0.0017 to 0.200 ug/L	Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Based on ISO 16308: 2014 - determination of Glyphosate and AMPA using high pressure liquid chromatography and tandem MS detection with the assistance of Manufacturing Application Engineer using SOP 579'	
		0.002 to 0.200 ug/L		Based on ISO 16308: 2014 - determination of Glyphosate and	

					detection (MSD) in multiple reaction mode (MRM)	AMPA using high pressure liquid chromatography and tandem MS detection with the assistance of Manufacturing Application Engineer using SOP 579'
			0.01 to 0.200 ug/L	Potable Water	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Based on ISO 16308: 2014 - determination of Glyphosate and AMPA using high pressure liquid chromatography and tandem MS detection with the assistance of Manufacturing Application Engineer using SOP 579'
752 Chemical residue testing05 Organic contaminants	Determination of Acrylamide in Food	Acrylamide	19.0 to 2000 ug/kg (extended by dilution)	Infant foods, Coffee and coffee substitutes, Cereals and bakery products, Confectionary, Fruit and vegetables, High carbohydrate food stuffs (such as potato products, biscuits and bread)	LCMSMS	Following in-house SOP 630
	Determination of PFAS and PFOS	ADONA (919005-14-4) (Ground)	0.001 to 0.189 ug/L	Ground Water	Solid phase extraction with direct injection LCMSMS	Based on ISO 21675:2019 with in house development together with Manufacturer Application Engineer using SOP 626
		ADONA (919005-14-4) (Potable)	0.0015 to 0.1890 ug/L	Potable Water	Solid phase extraction with direct injection LCMSMS	Based on ISO 21675:2019 with in house development

				together with Manufacturer Application Engineer using SOP 626
ADONA (919005-14-4) (Surface)	0.001 to 0.189 ug/L	Surface Water	Solid phase extraction with direct injection LCMSMS	Based on ISO 21675:2019 with in house development together with Manufacturer Application Engineer using SOP 626
HFDO-DA (GenX) (13252-13-6) (Ground)	0.002 to 0.200 ug/L	Ground Water	Solid phase extraction with direct injection LCMSMS	Based on ISO 21675:2019 with in house development together with Manufacturer Application Engineer using SOP 626
HFDO-DA (GenX) (13252-13-6) (Potable)	0.0039 to 0.2000 ug/L	Potable Water	Solid phase extraction with direct injection LCMSMS	Based on ISO 21675:2019 with in house development together with Manufacturer Application Engineer using SOP 626
HFDO-DA (GenX) (13252-13-6) (Surface)	0.002 to 0.200 ug/L	Surface Water	Solid phase extraction with direct injection LCMSMS	Based on ISO 21675:2019 with in house development together with Manufacturer Application Engineer using SOP 626
PFAS (Sum of 20 identified by *) (Ground)	0.0008 to 0.2000 ug/L	Ground Water	Solid phase extraction with direct injection LCMSMS	Based on ISO 21675:2019 with in house development together with Manufacturer Application Engineer using SOP 626

PFAS (Sum of 20 identified by *) (Potable)	0.0027 to 0.2000 ug/L	Potable Water	Solid phase extraction with direct injection LCMSMS	Based on ISO 21675:2019 with in house development together with Manufacturer Application Engineer using SOP 626
PFAS (Sum of 20 identified by *) (Surface)	0.0006 to 0.2000 ug/L	Surface Water	Solid phase extraction with direct injection LCMSMS	Based on ISO 21675:2019 with in house development together with Manufacturer Application Engineer using SOP 626
PFBA (375-22-4) (Ground) *	0.001 to 0.200 ug/L	Ground Water	Solid phase extraction with direct injection LCMSMS	Based on ISO 21675:2019 with in house development together with Manufacturer Application Engineer using SOP 626
PFBA (375-22-4) (Potable) *	0.0032 to 0.2000 ug/L	Potable Water	Solid phase extraction with direct injection LCMSMS	Based on ISO 21675:2019 with in house development together with Manufacturer Application Engineer using SOP 626
PFBA (375-22-4) (Surface) *	0.0012 to 0.2000 ug/L	Surface Water	Solid phase extraction with direct injection LCMSMS	Based on ISO 21675:2019 with in house development together with Manufacturer Application Engineer using SOP 626
PFBS (375-73-5) (Ground) *	0.001 to 0.177 ug/L	Ground Water	Solid phase extraction with direct injection LCMSMS	Based on ISO 21675:2019 with in house development together with Manufacturer Application Engineer using SOP 626

PFBS (375-73-5) (Potable) *	0.003 to 0.177 ug/L	Potable Water	Solid phase extraction with direct injection LCMSMS	Based on ISO 21675:2019 with in house development together with Manufacturer Application Engineer using SOP 626
PFBS (375-73-5) (Surface) *	0.001 to 0.177 ug/L	Surface Water	Solid phase extraction with direct injection LCMSMS	Based on ISO 21675:2019 with in house development together with Manufacturer Application Engineer using SOP 626
PFDA (335-76-2) (Ground) *	0.002 to 0.200 ug/L	Ground Water	Solid phase extraction with direct injection LCMSMS	Based on ISO 21675:2019 with in house development together with Manufacturer Application Engineer using SOP 626
PFDA (335-76-2) (Potable) *	0.003 to 0.200 ug/L	Potable Water	Solid phase extraction with direct injection LCMSMS	Based on ISO 21675:2019 with in house development together with Manufacturer Application Engineer using SOP 626
PFDA (335-76-2) (Surface) *	.001 to 0.200 ug/L	Surface Water	Solid phase extraction with direct injection LCMSMS	Based on ISO 21675:2019 with in house development together with Manufacturer Application Engineer using SOP 626
PFDoA (307-55-1) (Ground) *	0.001 to 0.200 ug/L	Ground Water	Solid phase extraction with direct injection LCMSMS	Based on ISO 21675:2019 with in house development together with Manufacturer Application Engineer using SOP 626

PFDoA (307-55-1) (Potable) *	0.005 to 0.200 ug/L	Potable Water	Solid phase extraction with direct injection LCMSMS	Based on ISO 21675:2019 with in house development together with Manufacturer Application Engineer using SOP 626
PFDoA (307-55-1) (Surface) *	0.01 to 0.20 ug/L	Surface Water	Solid phase extraction with direct injection LCMSMS	Based on ISO 21675:2019 with in house development together with Manufacturer Application Engineer using SOP 626
PFDoS (79780-39-5) (Ground) *	0.002 to 0.194 ug/L	Ground Water	Solid phase extraction with direct injection LCMSMS	Based on ISO 21675:2019 with in house development together with Manufacturer Application Engineer using SOP 626
PFDoS (79780-39-5) (Potable) *	0.005 to 0.194 ug/L	Potable Water	Solid phase extraction with direct injection LCMSMS	Based on ISO 21675:2019 with in house development together with Manufacturer Application Engineer using SOP 626
PFDoS (79780-39-5) (Surface) *	0.002 to 0.194 ug/L	Surface Water	Solid phase extraction with direct injection LCMSMS	Based on ISO 21675:2019 with in house development together with Manufacturer Application Engineer using SOP 626
PFDS (335-77-3) (Ground) *	0.002 to 0.193 ug/L	Ground Water	Solid phase extraction with direct injection LCMSMS	Based on ISO 21675:2019 with in house development together with Manufacturer Application Engineer using SOP 626

PFDS (335-77-3) (Potable) *	0.0043 to 0.1930 ug/L	Potable Water	Solid phase extraction with direct injection LCMSMS	Based on ISO 21675:2019 with in house development together with Manufacturer Application Engineer using SOP 626
PFDS (335-77-3) (Surface) *	0.002 to 0.193 ug/L	Surface Water	Solid phase extraction with direct injection LCMSMS	Based on ISO 21675:2019 with in house development together with Manufacturer Application Engineer using SOP 626
PFHpA (375-85-9) (Ground) *	0.0008 to 0.2000 ug/L	Ground Water	Solid phase extraction with direct injection LCMSMS	Based on ISO 21675:2019 with in house development together with Manufacturer Application Engineer using SOP 626
PFHpA (375-85-9) (Potable) *	0.0027 to 0.2000 ug/L	Potable Water	Solid phase extraction with direct injection LCMSMS	Based on ISO 21675:2019 with in house development together with Manufacturer Application Engineer using SOP 626
PFHpA (375-85-9) (Surface) *	0.0008 to 0.2000 ug/L	Surface Water	Solid phase extraction with direct injection LCMSMS	Based on ISO 21675:2019 with in house development together with Manufacturer Application Engineer using SOP 626
PFHpS (375-92-8) (Ground) *	0.002 to 0.191 ug/L	Ground Water	Solid phase extraction with direct injection LCMSMS	Based on ISO 21675:2019 with in house development together with Manufacturer Application Engineer using SOP 626

PFHpS (375-92-8) (Potable) *	0.0044 to 0.1010 ug/L	Potable Water	Solid phase extraction with direct injection LCMSMS	Based on ISO 21675:2019 with in house development together with Manufacturer Application Engineer using SOP 626
PFHpS (375-92-8) (Surface) *	0.0010 to 0.1910 ug/L	Surface Water	Solid phase extraction with direct injection LCMSMS	Based on ISO 21675:2019 with in house development together with Manufacturer Application Engineer using SOP 626
PFHxA (307-24-4) (Ground) *	0.001 to 0.2000 ug/L	Ground Water	Solid phase extraction with direct injection LCMSMS	Based on ISO 21675:2019 with in house development together with Manufacturer Application Engineer using SOP 626
PFHxA (307-24-4) (Potable) *	0.003 to 0.200 ug/L	Potable Water	Solid phase extraction with direct injection LCMSMS	Based on ISO 21675:2019 with in house development together with Manufacturer Application Engineer using SOP 626
PFHxA (307-24-4) (Surface) *	0.0006 to 0.2000 ug/L	Surface Water	Solid phase extraction with direct injection LCMSMS	Based on ISO 21675:2019 with in house development together with Manufacturer Application Engineer using SOP 626
PFHxDA (67905-19-5) (Ground)	0.01 to 0.20 ug/L	Ground Water	Solid phase extraction with direct injection LCMSMS	Based on ISO 21675:2019 with in house development together with Manufacturer Application Engineer using SOP 626

PFHxDA (67905-19-5) (Potable)	0.005 to 0.200 ug/L	Potable Water	Solid phase extraction with direct injection LCMSMS	Based on ISO 21675:2019 with in house development together with Manufacturer Application Engineer using SOP 626
PFHxDA (67905-19-5) (Surface)	0.002 to 0.200 ug/L	Surface Water	Solid phase extraction with direct injection LCMSMS	Based on ISO 21675:2019 with in house development together with Manufacturer Application Engineer using SOP 626
PFHxS (355-46-4) (Potable) *	0.004 to 0.190 ug/L	Potable Water	Solid phase extraction with direct injection LCMSMS	Based on ISO 21675:2019 with in house development together with Manufacturer Application Engineer using SOP 626
PFHxS (355-46-4) (Surface) *	0.002 to 0.190 ug/L	Surface Water	Solid phase extraction with direct injection LCMSMS	Based on ISO 21675:2019 with in house development together with Manufacturer Application Engineer using SOP 626
PFHxS (355-46-4) (Ground) *	0.001 to 0.190 ug/L	Ground Water	Solid phase extraction with direct injection LCMSMS	Based on ISO 21675:2019 with in house development together with Manufacturer Application Engineer using SOP 626
PFNA (375-95-1) (Ground) *	0.001 0.200 ug/L	Ground Water	Solid phase extraction with direct injection LCMSMS	Based on ISO 21675:2019 with in house development together with Manufacturer Application Engineer using SOP 626

PFNA (375-95-1) (Potable) *	0.0036 to 0.2000 ug/L	Potable Water	Solid phase extraction with direct injection LCMSMS	Based on ISO 21675:2019 with in house development together with Manufacturer Application Engineer using SOP 626
PFNA (375-95-1) (Surface) *	0.0026 to 0.2000 ug/L	Surface Water	Solid phase extraction with direct injection LCMSMS	Based on ISO 21675:2019 with in house development together with Manufacturer Application Engineer using SOP 626
PFNS (68259-12-1) (Ground) *	0.001 to 0.192 ug/L	Ground Water	Solid phase extraction with direct injection LCMSMS	Based on ISO 21675:2019 with in house development together with Manufacturer Application Engineer using SOP 626
PFNS (68259-12-1) (Potable) *	0.0042 to 0.1920 ug/L	Potable Water	Solid phase extraction with direct injection LCMSMS	Based on ISO 21675:2019 with in house development together with Manufacturer Application Engineer using SOP 626
PFNS (68259-12-1) (Surface) *	0.0014 to 0.1920 ug/L	Surface Water	Solid phase extraction with direct injection LCMSMS	Based on ISO 21675:2019 with in house development together with Manufacturer Application Engineer using SOP 626
PFOA (335-67-1) (Ground) *	0.002 to 0.200 ug/L	Ground Water	Solid phase extraction with direct injection LCMSMS	Based on ISO 21675:2019 with in house development together with Manufacturer Application Engineer using SOP 626

PFOA (335-67-1) (Potable) *	0.0042 to 0.2000 ug/L	Potable Water	Solid phase extraction with direct injection LCMSMS	Based on ISO 21675:2019 with in house development together with Manufacturer Application Engineer using SOP 626
PFOA (335-67-1) (Surface) *	0.0012 tyo 0.2000 ug/L	Surface Water	Solid phase extraction with direct injection LCMSMS	Based on ISO 21675:2019 with in house development together with Manufacturer Application Engineer using SOP 626
PFOS (1763-23-1) (Ground) *	0.002 to 0.192 ug/L	Ground Water	Solid phase extraction with direct injection LCMSMS	Based on ISO 21675:2019 with in house development together with Manufacturer Application Engineer using SOP 626
PFOS (1763-23-1) (Potable) *	0.005 to 0.192 ug/L	Potable Water	Solid phase extraction with direct injection LCMSMS	Based on ISO 21675:2019 with in house development together with Manufacturer Application Engineer using SOP 626
PFOS (1763-23-1) (Surface) *	0.001 to 0.192 ug/L	Surface Water	Solid phase extraction with direct injection LCMSMS	Based on ISO 21675:2019 with in house development together with Manufacturer Application Engineer using SOP 626
PFPA (2706-90-3) (Ground) *	0.001 to 0.200 ug/L	Ground Water	Solid phase extraction with direct injection LCMSMS	Based on ISO 21675:2019 with in house development together with Manufacturer Application Engineer using SOP 626

PFPA (2706-90-3) (Potable) *	0.0030 to 0.2000 ug/L	Potable Water	Solid phase extraction with direct injection LCMSMS	Based on ISO 21675:2019 with in house development together with Manufacturer Application Engineer using SOP 626
PFPA (2706-90-3) (Surface) *	0.001 to 0.200 ug/L	Surface Water	Solid phase extraction with direct injection LCMSMS	Based on ISO 21675:2019 with in house development together with Manufacturer Application Engineer using SOP 626
PFPeS (2706-91-4) (Ground) *	0.001 to 0.188 ug/L	Ground Water	Solid phase extraction with direct injection LCMSMS	Based on ISO 21675:2019 with in house development together with Manufacturer Application Engineer using SOP 626
PFPeS (2706-91-4) (Potable) *	0.004 to 0.188 ug/L	Potable Water	Solid phase extraction with direct injection LCMSMS	Based on ISO 21675:2019 with in house development together with Manufacturer Application Engineer using SOP 626
PFPeS (2706-91-4) (Surface) *	0.002 to 0.188 ug/L	Surface Water	Solid phase extraction with direct injection LCMSMS	Based on ISO 21675:2019 with in house development together with Manufacturer Application Engineer using SOP 626
PFTeA (376-06-7) (Ground)	0.001 to 0.200 ug/L	Ground Water	Solid phase extraction with direct injection LCMSMS	Based on ISO 21675:2019 with in house development together with Manufacturer Application Engineer using SOP 626

PFTeA (376-06-7) (Potable)	0.005 to 0.200 ug/L	Potable Water	Solid phase extraction with direct injection LCMSMS	Based on ISO 21675:2019 with in house development together with Manufacturer Application Engineer using SOP 626
PFTeA (376-06-7) (Surface)	0.002 to 0.200 ug/L	Surface Water	Solid phase extraction with direct injection LCMSMS	Based on ISO 21675:2019 with in house development together with Manufacturer Application Engineer using SOP 626
PFTrDA (72629-94-8) (Ground) *	0.002 to 0.200 ug/L	Ground Water	Solid phase extraction with direct injection LCMSMS	Based on ISO 21675:2019 with in house development together with Manufacturer Application Engineer using SOP 626
PFTrDA (72629-94-8) (Potable) *	0.01 to 0.20 ug/L	Potable Water	Solid phase extraction with direct injection LCMSMS	Based on ISO 21675:2019 with in house development together with Manufacturer Application Engineer using SOP 626
PFTrDA (72629-94-8) (Surface) *	0.002 to 0.200 ug/L	Surface Water	Solid phase extraction with direct injection LCMSMS	Based on ISO 21675:2019 with in house development together with Manufacturer Application Engineer using SOP 626
PFTrDS (791563-89-8) (Ground) *	0.01 to 0.19 ug/L	Ground Water	Solid phase extraction with direct injection LCMSMS	Based on ISO 21675:2019 with in house development together with Manufacturer Application Engineer using SOP 626

PFTrDS (791563-89-8) (Potable) *	0.005 to 0.194 ug/L	Potable Water	Solid phase extraction with direct injection LCMSMS	Based on ISO 21675:2019 with in house development together with Manufacturer Application Engineer using SOP 626
PFTrDS (791563-89-8) (Surface) *	0.003 to 0.194 ug/L	Surface Water	Solid phase extraction with direct injection LCMSMS	Based on ISO 21675:2019 with in house development together with Manufacturer Application Engineer using SOP 626
PFUnA (2058-94-8) (Ground) *	0.001 to 0.200 ug/L	Ground Water	Solid phase extraction with direct injection LCMSMS	Based on ISO 21675:2019 with in house development together with Manufacturer Application Engineer using SOP 626
PFUnA (2058-94-8) (Potable) *	0.004 to 0.200 ug/L	Potable Water	Solid phase extraction with direct injection LCMSMS	Based on ISO 21675:2019 with in house development together with Manufacturer Application Engineer using SOP 626
PFUnA (2058-94-8) (Surface) *	0.0012 to 0.2000 ug/L	Surface Water	Solid phase extraction with direct injection LCMSMS	Based on ISO 21675:2019 with in house development together with Manufacturer Application Engineer using SOP 626
PFUnDS (749786-16-1) (Ground) *	0.002 to 0.194 ug/L	Ground Water	Solid phase extraction with direct injection LCMSMS	Based on ISO 21675:2019 with in house development together with Manufacturer Application Engineer using SOP 626

		PFUnDS (749786-16-1) (Potable) *		Potable Water	with direct injection LCMSMS	Based on ISO 21675:2019 with in house development together with Manufacturer Application Engineer using SOP 626
		PFUnDS (749786-16-1) (Surface) *	0.002 to 0.194 ug/L	Surface Water	Solid phase extraction with direct injection LCMSMS	Based on ISO 21675:2019 with in house development together with Manufacturer Application Engineer using SOP 626
766 Environmental testing (inc waters)01 Metal analysis	Determination of Metals by ICP-OES	Antimony	6 to 5000 mg/Kg	Soil	ICP-OES	Based on US EPA Method 3051 using SOP 616
			6 to 5000 mg/Kg	Solid (CDW - Construction and demolition waste, RA - Recycled aggregates, BDW - Biodegradable waste, Sludge)	ICP-OES	Based on US EPA Method 3051 using SOP 616
		Arsenic	5 to 5000 mg/Kg	Soil	ICP-OES	Based on US EPA Method 3051 using SOP 616
			6 to 5000 mg/Kg	Solid (CDW - Construction and demolition waste, RA - Recycled aggregates, BDW - Biodegradable waste, Sludge)	ICP-OES	Based on US EPA Method 3051 using SOP 616
		Barium	6 to 5000 mg/Kg	Soil	ICP-OES	Based on US EPA Method 3051 using SOP 616
			6 to 5000 mg/Kg	Solid (CDW - Construction and demolition waste, RA - Recycled	ICP-OES	Based on US EPA Method 3051 using SOP 616

	· ·			
		aggregates, BDW - Biodegradable waste, Sludge)		
Boron	12 to 5000 mg/Kg	Solid (CDW - Construction and demolition waste, RA - Recycled aggregates, BDW - Biodegradable waste, Sludge)	ICP-OES	Based on US EPA Method 3051 using SOP 616
	13 to 5000 mg/Kg	Soil	ICP-OES	Based on US EPA Method 3051 using SOP 616
Cadmium	5 to 5000 mg/Kg	Soil	ICP-OES	Based on US EPA Method 3051 using SOP 616
	6 to 5000 mg/Kg	Solid (CDW - Construction and demolition waste, RA - Recycled aggregates, BDW - Biodegradable waste, Sludge)	ICP-OES	Based on US EPA Method 3051 using SOP 616
Calcium	105 to 50000 mg/Kg	Soil	ICP-OES	Based on US EPA Method 3051 using SOP 616
Chromium	6 to 5000 ug/Kg	Solid (CDW - Construction and demolition waste, RA - Recycled aggregates, BDW - Biodegradable waste, Sludge)	ICP-OES	Based on US EPA Method 3051 using SOP 616
	7 to 5000 mg/Kg	Soil	ICP-OES	Based on US EPA Method 3051 using SOP 616
Copper	146 to 5000 mg/Kg	Solid (CDW - Construction and demolition waste, RA - Recycled	ICP-OES	Based on US EPA Method 3051 using SOP 616

		aggregates, BDW - Biodegradable waste, Sludge)		
	38 to 5000 mg/Kg	Soil	ICP-OES	Based on US EPA Method 3051 using SOP 616
Iron	268 to 50000 mg/Kg	Soil	ICP-OES	Based on US EPA Method 3051 using SOP 616
	81 to 50000 mg/Kg	Solid (CDW - Construction and demolition waste, RA - Recycled aggregates, BDW - Biodegradable waste, Sludge)	ICP-OES	Based on US EPA Method 3051 using SOP 616
Lead	6 to 5000 mg/Kg	Solid (CDW - Construction and demolition waste, RA - Recycled aggregates, BDW - Biodegradable waste, Sludge)	ICP-OES	Based on US EPA Method 3051 using SOP 616
	7 to 5000 mg/Kg	Soil	ICP-OES	Based on US EPA Method 3051 using SOP 616
Nickel	11 to 5000 mg/Kg	Soil	ICP-OES	Based on US EPA Method 3051 using SOP 616
	13 to 5000 mg/kg	Solid (CDW - Construction and demolition waste, RA - Recycled aggregates, BDW - Biodegradable waste, Sludge)	ICP-OES	Based on US EPA Method 3051 using SOP 616
Selenium	2 to 5000 mg/Kg	Soil	ICP-OES	Based on US EPA Method 3051 using SOP 616

		3 to 5000 mg/Kg	Solid (CDW - Construction and demolition waste, RA - Recycled aggregates, BDW - Biodegradable waste, Sludge)	ICP-OES	Based on US EPA Method 3051 using SOP 616
	Zinc	13 to 5000 mg/Kg	Soil	ICP-OES	Based on US EPA Method 3051 using SOP 616
		13 to 5000 mg/Kg	Solid (CDW - Construction and demolition waste, RA - Recycled aggregates, BDW - Biodegradable waste, Sludge)	ICP-OES	Based on US EPA Method 3051 using SOP 616
766 Environmental testing (inc waters)04 Organic		0.0013 to 0.25 ug/L	Surface Water	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Based on EPA Method 557 Quantification of Haloacetic acids, Bromate, and Dalapon in Drinking Water Using Ion Chromatography and Tandem Mass Spectrometry Level Utilizing Online Sample Preparation with LC-MS/MS using SOP 580
		0.0025 to 0.25 ug/L	Ground Water	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Based on EPA Method 557 Quantification of Haloacetic acids, Bromate, and Dalapon in Drinking Water Using Ion Chromatography and Tandem Mass Spectrometry Level Utilizing Online

				Sample Preparation with LC-MS/MS using SOP 580
		0.004 to 0.25 ug/L	spectrometric detection (MSD) in	Based on EPA Method 557 Quantification of Haloacetic acids, Bromate, and Dalapon in Drinking Water Using Ion Chromatography and Tandem Mass Spectrometry Level Utilizing Online Sample Preparation with LC-MS/MS using SOP 580
Determination of Haloacetic Acid	BromoChloroAcetic Acid (b)	0.2 to 80 ug/l	spectrometric detection (MSD) in	Based on EPA Method 557 Quantification of Haloacetic acids, Bromate, and Dalapon in Drinking Water Using Ion Chromatography and Tandem Mass Spectrometry Level Utilizing Online Sample Preparation with LC-MS/MS using SOP 580
		0.2 to 80 ug/L	spectrometric detection (MSD) in	Based on EPA Method 557 Quantification of Haloacetic acids, Bromate, and Dalapon in Drinking Water Using Ion Chromatography and Tandem Mass Spectrometry Level Utilizing Online Sample Preparation

				with LC-MS/MS using SOP 580
	0.5 to 80 ug/L	Potable Water	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Based on EPA Method 557 Quantification of Haloacetic acids, Bromate, and Dalapon in Drinking Water Using Ion Chromatography and Tandem Mass Spectrometry Level Utilizing Online Sample Preparation with LC-MS/MS using SOP 580
BromoDiChloroAcetic Acid (b)	0.2 to 80 ug/L	Surface Water	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Based on EPA Method 557 Quantification of Haloacetic acids, Bromate, and Dalapon in Drinking Water Using Ion Chromatography and Tandem Mass Spectrometry Level Utilizing Online Sample Preparation with LC-MS/MS using SOP 580
	0.5 to 80 ug/L	Potable Water	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Based on EPA Method 557 Quantification of Haloacetic acids, Bromate, and Dalapon in Drinking Water Using Ion Chromatography and Tandem Mass Spectrometry Level Utilizing Online Sample Preparation

					with LC-MS/MS using SOP 580
	ChloroDiBromoAcetic Acid (b)	0.1 to 80 ug/L	Ground Water	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Based on EPA Method 557 Quantification of Haloacetic acids, Bromate, and Dalapon in Drinking Water Using Ion Chromatography and Tandem Mass Spectrometry Level Utilizing Online Sample Preparation with LC-MS/MS using SOP 580
		0.2 to 80 ug/L	Surface Water	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Based on EPA Method 557 Quantification of Haloacetic acids, Bromate, and Dalapon in Drinking Water Using Ion Chromatography and Tandem Mass Spectrometry Level Utilizing Online Sample Preparation with LC-MS/MS using SOP 580
		0.5 to 80 ug/L	Potable Water	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Based on EPA Method 557 Quantification of Haloacetic acids, Bromate, and Dalapon in Drinking Water Using Ion Chromatography and Tandem Mass Spectrometry Level Utilizing Online Sample Preparation

				with LC-MS/MS using SOP 580
DiBromoAcetic Acid (a,b)	0.2 to 80 ug/L	Ground Water	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Based on EPA Method 557 Quantification of Haloacetic acids, Bromate, and Dalapon in Drinking Water Using Ion Chromatography and Tandem Mass Spectrometry Level Utilizing Online Sample Preparation with LC-MS/MS using SOP 580
	0.2 to 80 ug/L	Surface Water	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Based on EPA Method 557 Quantification of Haloacetic acids, Bromate, and Dalapon in Drinking Water Using Ion Chromatography and Tandem Mass Spectrometry Level Utilizing Online Sample Preparation with LC-MS/MS using SOP 580
	0.5 to 80 ug/L	Potable Water	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Based on EPA Method 557 Quantification of Haloacetic acids, Bromate, and Dalapon in Drinking Water Using Ion Chromatography and Tandem Mass Spectrometry Level Utilizing Online Sample Preparation

					with LC-MS/MS using SOP 580
	DiChloroAcetic Acid (a,b)	0.1 to 0.80 ug/L	Surface Water	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Based on EPA Method 557 Quantification of Haloacetic acids, Bromate, and Dalapon in Drinking Water Using Ion Chromatography and Tandem Mass Spectrometry Level Utilizing Online Sample Preparation with LC-MS/MS using SOP 580
		0.2 to 80 ug/L	Ground Water	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Based on EPA Method 557 Quantification of Haloacetic acids, Bromate, and Dalapon in Drinking Water Using Ion Chromatography and Tandem Mass Spectrometry Level Utilizing Online Sample Preparation with LC-MS/MS using SOP 580
		0.4 to 80 ug/L	Potable Water	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Based on EPA Method 557 Quantification of Haloacetic acids, Bromate, and Dalapon in Drinking Water Using Ion Chromatography and Tandem Mass Spectrometry Level Utilizing Online Sample Preparation

				with LC-MS/MS using SOP 580
MonoBromoAcetic Acid a,b)	0.19 to 80 ug/L	Surface Water	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Based on EPA Method 557 Quantification of Haloacetic acids, Bromate, and Dalapon in Drinking Water Using Ion Chromatography and Tandem Mass Spectrometry Level Utilizing Online Sample Preparation with LC-MS/MS using SOP 580
	0.2 to 80 ug/L	Ground Water	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Based on EPA Method 557 Quantification of Haloacetic acids, Bromate, and Dalapon in Drinking Water Using Ion Chromatography and Tandem Mass Spectrometry Level Utilizing Online Sample Preparation with LC-MS/MS using SOP 580
	0.6 to 80 ug/L	Potable Wtaer	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Based on EPA Method 557 Quantification of Haloacetic acids, Bromate, and Dalapon in Drinking Water Using Ion Chromatography and Tandem Mass Spectrometry Level Utilizing Online Sample Preparation

				with LC-MS/MS using SOP 580
MonoChloroAcetic Acid (a,b)	0.2 to 80 ug/L	Ground Water	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Based on EPA Method 557 Quantification of Haloacetic acids, Bromate, and Dalapon in Drinking Water Using Ion Chromatography and Tandem Mass Spectrometry Level Utilizing Online Sample Preparation with LC-MS/MS using SOP 580
	0.2 to 80 ug/L	Surface Water	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Based on EPA Method 557 Quantification of Haloacetic acids, Bromate, and Dalapon in Drinking Water Using Ion Chromatography and Tandem Mass Spectrometry Level Utilizing Online Sample Preparation with LC-MS/MS using SOP 580
	0.6 to 80 ug/L	Potable Water	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Based on EPA Method 557 Quantification of Haloacetic acids, Bromate, and Dalapon in Drinking Water Using Ion Chromatography and Tandem Mass Spectrometry Level Utilizing Online Sample Preparation

				with LC-MS/MS using SOP 580
Total of 5 Haloacetic Acids (total of those marked as 'a')	0.1 to 80 ug/L	Surface Water	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Based on EPA Method 557 Quantification of Haloacetic acids, Bromate, and Dalapon in Drinking Water Using Ion Chromatography and Tandem Mass Spectrometry Level Utilizing Online Sample Preparation with LC-MS/MS using SOP 580
	0.2 ug/L	Ground Water	Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Based on EPA Method 557 Quantification of Haloacetic acids, Bromate, and Dalapon in Drinking Water Using Ion Chromatography and Tandem Mass Spectrometry Level Utilizing Online Sample Preparation with LC-MS/MS using SOP 580
	0.4 to 80 ug/L	Potable Water	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Based on EPA Method 557 Quantification of Haloacetic acids, Bromate, and Dalapon in Drinking Water Using Ion Chromatography and Tandem Mass Spectrometry Level Utilizing Online Sample Preparation

				with LC-MS/MS using SOP 580
Total of 9 Haloacetic Acids (total of those marked as 'b')	0.1 to 80 ug/L	Ground Water	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Based on EPA Method 557 Quantification of Haloacetic acids, Bromate, and Dalapon in Drinking Water Using Ion Chromatography and Tandem Mass Spectrometry Level Utilizing Online Sample Preparation with LC-MS/MS using SOP 580
	0.1 to 80 ug/L	Surface Water	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Based on EPA Method 557 Quantification of Haloacetic acids, Bromate, and Dalapon in Drinking Water Using Ion Chromatography and Tandem Mass Spectrometry Level Utilizing Online Sample Preparation with LC-MS/MS using SOP 580
	0.4 to 80 ug/L	Potable Water	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Based on EPA Method 557 Quantification of Haloacetic acids, Bromate, and Dalapon in Drinking Water Using Ion Chromatography and Tandem Mass Spectrometry Level Utilizing Online Sample Preparation

					with LC-MS/MS using SOP 580
T	TriBromoAcetic Acid (b)	0.1 to 80 ug/L	Ground Water	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Based on EPA Method 557 Quantification of Haloacetic acids, Bromate, and Dalapon in Drinking Water Using Ion Chromatography and Tandem Mass Spectrometry Level Utilizing Online Sample Preparation with LC-MS/MS using SOP 580
		0.2 to 80 ug/L	Surface Water	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Based on EPA Method 557 Quantification of Haloacetic acids, Bromate, and Dalapon in Drinking Water Using Ion Chromatography and Tandem Mass Spectrometry Level Utilizing Online Sample Preparation with LC-MS/MS using SOP 580
		0.5 to 80 ug/L	Potable Water	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Based on EPA Method 557 Quantification of Haloacetic acids, Bromate, and Dalapon in Drinking Water Using Ion Chromatography and Tandem Mass Spectrometry Level Utilizing Online Sample Preparation

					with LC-MS/MS using SOP 580
	TriChloroAcetic Acid (a,b)	0.1 to 80 ug/L	Surface Water	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Based on EPA Method 557 Quantification of Haloacetic acids, Bromate, and Dalapon in Drinking Water Using Ion Chromatography and Tandem Mass Spectrometry Level Utilizing Online Sample Preparation with LC-MS/MS using SOP 580
		0.2 to 80 ug/L	Ground Water	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Based on EPA Method 557 Quantification of Haloacetic acids, Bromate, and Dalapon in Drinking Water Using Ion Chromatography and Tandem Mass Spectrometry Level Utilizing Online Sample Preparation with LC-MS/MS using SOP 580
	0.4 to 80 t	0.4 to 80 ug/L	Potable Water	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Based on EPA Method 557 Quantification of Haloacetic acids, Bromate, and Dalapon in Drinking Water Using Ion Chromatography and Tandem Mass Spectrometry Level Utilizing Online Sample Preparation

					with LC-MS/MS using SOP 580
Determination of Organic Matter	Loss on Ignition	0.8 % to 100 %	Soil	Muffle Furnace, Drying oven, Balance	Based on Soil Sampling and Methods of Analysis, 1993 using SOP 310
		8.0 % to 100 %	Solids (CDW, BDW, RA) CDW - Construction & Demolition Waste, BDW - Biodegradable Waste, RA - Recycled Aggregates	Muffle Furnace, Drying oven, Balance	Based on Soil Sampling and Methods of Analysis, 1993 using SOP 310
		9 % to 100 %	Sludge	Muffle Furnace, Drying oven, Balance	Based on Soil Sampling and Methods of Analysis, 1993 using SOP 310
Determination of TPH's	Aliphatics (>C10-C12)	7 to 2000 mg/Kg	Soil	Solvent extraction using PAL RTC and analysis by GC-FID Chromatography	Based on USEPA Method 8015B using SOP 572
	Aliphatics (>C12-C16)	11 to 2000 mg/Kg	Solid (CDW - Construction and Demolition Waste)	Solvent extraction using PAL RTC and analysis by GC-FID Chromatography	Based on USEPA Method 8015B using SOP 572
		7 to 2000 mg/Kg	Soil	Solvent extraction using PAL RTC and analysis by GC-FID Chromatography	Based on USEPA Method 8015B using SOP 572
	Aliphatics (>C16-C21)	11 to 2000 mg/Kg	Solid (CDW - Construction and Demolition Waste)	Solvent extraction using PAL RTC and analysis by GC-FID Chromatography	Based on USEPA Method 8015B using SOP 572
		7 to 2000 mg/Kg	Soil	Solvent extraction using PAL RTC and analysis by GC-FID Chromatography	Based on USEPA Method 8015B using SOP 572

Aliphatics (>C21-C35)	7 to 2000 mg/Kg	Soil	Solvent extraction using PAL RTC and analysis by GC-FID Chromatography	Based on USEPA Method 8015B using SOP 572
Aliphatics (>C35-C40)	11 to 2000 mg/Kg	Solid (CDW - Construction and Demolition Waste)	Solvent extraction using PAL RTC and analysis by GC-FID Chromatography	Based on USEPA Method 8015B using SOP 572
	7 to 2000 mg/Kg	Soil	Solvent extraction using PAL RTC and analysis by GC-FID Chromatography	Based on USEPA Method 8015B using SOP 572
Aliphatics (>C8-C12)	11 to 2000 mg/Kg	Solid (CDW - Construction and Demolition Waste)	Solvent extraction using PAL RTC and analysis by GC-FID Chromatography	Based on USEPA Method 8015B using SOP 572
Aliphatics (C8 - C10)	7 to 2000 mg/Kg	Soil	Solvent extraction using PAL RTC and analysis by GC-FID Chromatography	Based on USEPA Method 8015B using SOP 572
Aliphatics (C8-C10)	11 to 2000 mg/Kg	Solid (CDW - Construction and Demolition Waste)	Solvent extraction using PAL RTC and analysis by GC-FID Chromatography	Based on USEPA Method 8015B using SOP 572
Aromatics (>C10-C12)	11 to 2000 mg/Kg	Solid (CDW - Construction and Demolition Waste)	Solvent extraction using PAL RTC and analysis by GC-FID Chromatography	Based on USEPA Method 8015B using SOP 572
	7 to 2000 mg/Kg	Soil	Solvent extraction using PAL RTC and analysis by GC-FID Chromatography	Based on USEPA Method 8015B using SOP 572
Aromatics (>C12-C16)	11 to 2000 mg/Kg	Solid (CDW - Construction and Demolition Waste)	Solvent extraction using PAL RTC and analysis by GC-FID Chromatography	Based on USEPA Method 8015B using SOP 572
	7 to 2000 mg/Kg	Soil	Solvent extraction using PAL RTC and analysis by GC-FID Chromatography	Based on USEPA Method 8015B using SOP 572

Aromatics (>C16-C21)	11 to 2000 mg/Kg	Solid (CDW - Construction and Demolition Waste)	Solvent extraction using PAL RTC and analysis by GC-FID Chromatography	Based on USEPA Method 8015B using SOP 572
	7 to 2000 mg/Kg	Soil	Solvent extraction using PAL RTC and analysis by GC-FID Chromatography	Based on USEPA Method 8015B using SOP 572
Aromatics (>C21-C35)	11 to 2000 mg/Kg	Solid (CDW - Construction and Demolition Waste)	Solvent extraction using PAL RTC and analysis by GC-FID Chromatography	Based on USEPA Method 8015B using SOP 572
	7 to 2000 mg/Kg	Soil	Solvent extraction using PAL RTC and analysis by GC-FID Chromatography	Based on USEPA Method 8015B using SOP 572
Aromatics (>C35-C40)	11 to 2000 mg/Kg	Solid (CDW- Construction and Demolition Waste)	Solvent extraction using PAL RTC and analysis by GC-FID Chromatography	Based on USEPA Method 8015B using SOP 572
Aromatics (C8-C10)	11 to 2000 mg/Kg	Solid (CDW - Construction and Demolition Waste)	Solvent extraction using PAL RTC and analysis by GC-FID Chromatography	Based on USEPA Method 8015B using SOP 572
	7 to 2000 mg/Kg	Soil	Solvent extraction using PAL RTC and analysis by GC-FID Chromatography	Based on USEPA Method 8015B using SOP 572
Total (C8 - C40)	7 to 2000 mg/Kg	Soil	Solvent extraction using PAL RTC and analysis by GC-FID Chromatography	Based on USEPA Method 8015B using SOP 572
Total (C8-C40)	11 to 2000 mg/Kg	Solid (CDW - Construction and Demolition Waste)	Solvent extraction using PAL RTC and analysis by GC-FID Chromatography	Based on USEPA Method 8015B using SOP 572
Total Aliphatics (C8 - C40)	7 to 2000 mg/Kg	Soil	Solvent extraction using PAL RTC and analysis by GC-FID Chromatography	Based on USEPA Method 8015B using SOP 572

	Total Aliphatics (C8-C40)	11 to 2000 mg/Kg	Solid (CDW - Construction and Demolition Waste)	Solvent extraction using PAL RTC and analysis by GC-FID Chromatography	Based on USEPA Method 8015B using SOP 572
	Total Aromatic (C8 - C40)	7 to 2000 mg/Kg	Soil	Solvent extraction using PAL RTC and analysis by GC-FID Chromatography	Based on USEPA Method 8015B using SOP 572
	Total Aromatics (C8-C40)	11 to 2000 mg/Kg	Solid (CDW - Construction and Demolition Waste)	Solvent extraction using PAL RTC and analysis by GC-FID Chromatography	Based on USEPA Method 8015B using SOP 572
Determination of Volatile Organic Compounds	1,1,2,2- Tetrachloroethane	1 to 200 ug/L (extended by dilution)	Ground Water	Headspace GCMS	EPA Method 8260B using SOP 154
		1 to 200 ug/L (extended by dilution)	Industrial Effluent	Headspace GCMS	EPA Method 8260B using SOP 154
		1 to 200 ug/L (extended by dilution)	Potable Water	Headspace GCMS	EPA Method 8260B using SOP 154
		1 to 200 ug/L (extended by dilution)	Surface Water	Headspace GCMS	EPA Method 8260B using SOP 154
	1,2-Dibromo-3- chloropropane	1 to 200 ug/L (extended by dilution)	Ground Water	Headspace GCMS	EPA Method 8260B using SOP 154
		1 to 200 ug/L (extended by dilution)	Industrial Effluent	Headspace GCMS	EPA Method 8260B using SOP 154
		1 to 200 ug/L (extended by dilution)	Surface Water	Headspace GCMS	EPA Method 8260B using SOP 154
		1 to 200 ug/L (extended by dilution)	Ground Water	Headspace GCMS	EPA Method 8260B using SOP 154
		1 to 200 ug/L (extended by dilution)	Industrial Effluent	Headspace GCMS	EPA Method 8260B using SOP 154

	1 to 200 ug/L (extended by dilution)	Potable Water	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Surface Water	Headspace GCMS	EPA Method 8260B using SOP 154
Dichlorodifluoromethane	1 to 200 ug/L (extended by dilution)	Ground Water	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Industrial Effluent	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Potable Water	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Surface Water	Headspace GCMS	EPA Method 8260B using SOP 154
Dichloromethane	1 to 200 ug/L (extended by dilution)	Potable Water	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Surface Water	Headspace GCMS	EPA Method 8260B using SOP 154
	2 to 200 ug/L (extended by dilution)	Industrial Effluent	Headspace GCMS	EPA Method 8260B using SOP 154
	5 to 200 ug/L (extended by dilution)	Ground Water	Headspace GCMS	EPA Method 8260B using SOP 154
Trichloroethene	1 to 200 ug/L (extended by dilution)	Industrial Effluent	Headspace GCMS	EPA Method 8260B using SOP 154
Trichlorofluoromethane	1 to 200 ug/L (extended by dilution)	Industrial Effluent	Headspace GCMS	EPA Method 8260B using SOP 154
Vinyl Chloride	0.1 to 50 ug/L (extended by dilution)	Industrial Effluent	Headspace GCMS	EPA Method 8260B using SOP 154

			0.118 to 50 ug/L (extended by dilution)	Potable Water	Headspace GCMS	EPA Method 8260B using SOP 154
766 Environmental testing (inc waters)05 Inorganic	Determination of Dry Matter	Dry Matter	0.06 % to 100 %	Sludge	Drying Oven, Balance	Based on Soil Sampling and Methods of Analysis, 1993 using SOP 302
			1.7 % to 100 %	Soil	Drying Oven, Balance	Based on Soil Sampling and Methods of Analysis, 1993 using SOP 302
			3.4 % to 100 %	Solids (CDW, BDW, RA) CDW - Construction & Demolition Waste, BDW - Biodegradable Waste, RA - Recycled Aggregates	Drying Oven, Balance	Based on Soil Sampling and Methods of Analysis, 1993 using SOP 302
	Determination of Haloacetic Acid	BromoDiChloroAcetic Acid (b)	0.2 to 80 ug/L	Ground Water	spectrometric detection (MSD) in	Based on EPA Method 557 Quantification of Haloacetic acids, Bromate, and Dalapon in Drinking Water Using Ion Chromatography and Tandem Mass Spectrometry Level Utilizing Online Sample Preparation with LC-MS/MS using SOP 580
	Determination of Moisture C Moisture	Moisture Content	1.7 % to 100 %	Soil	Drying Oven, Balance	Based on Soil Sampling and Methods of Analysis, 1993 using SOP 302
			3.4 % to 100 %	Solids (CDW, BDW, RA) CDW - Construction &	Drying Oven, Balance	Based on Soil Sampling and

		Moisture Content by Calculation	0.06 % to 100 %	Demolition Waste, BDW - Biodegradable Waste, RA - Recycled Aggregates Sludge	N/A	Methods of Analysis, 1993 using SOP 302 Based on Soil Sampling and Methods of Analysis,
	Determination of Total Dissolved Solids	Total Dissolved Solids	54 to 15000 mg/Kg	Leachate	Drying Oven, Balance	Based on Standard Method for the Examination of Water and Wastewater 2017, 23rd Edition, Method 2540 C and Guideline on Laboratory Analysis of Potentially Contaminated Soils using SOP 105
767 Physical test/measurement01 pH		рН	4.00 - 12.00 pH units	Leachate	pH meter, electrode	Based on Standard Method for the Examination of Water and Wastewater 2017, 23rd Edition, Method 4500 - H+ B and Guideline of Laboratory Analysis of Potentially Contaminated Soils using SOP 110
			4.00 - 12.00 pH units	Sludge	pH meter, electrode	Based on Standard Method for the Examination of Water and Wastewater 2017, 23rd Edition, Method 4500 - H+ B and Guideline of Laboratory Analysis of Potentially

			Contaminated Soils using SOP 110
	Solids (CDW, BDW, RA) CDW - Construction & Demolition Waste, BDW - Biodegradable Waste, RA - Recycled Aggregates	pH meter, electrode	Based on Standard Method for the Examination of Water and Wastewater 2017, 23rd Edition, Method 4500 - H+ B and Guideline of Laboratory Analysis of Potentially Contaminated Soils using SOP 110

Head Office

Chemical Testing

Category: A

Chemistry Field - Tests	Test name	Analyte	Range of measurement	Matrix	Equipment/technique	Standard reference/SOP
752 Chemical residue testing04 Pesticide residues Determination of Pesticides			0.002 to 0.125 ug/L	Groundwater	Solvent extraction on triple quad GCMSMS - GCMS with triple quad mass spectrometric detection with TSQ9000	EPA Method 8081 along with In house development with Manufacturer Applications Engineer using SOP 575
		0.002 to 0.125 ug/L	Surface Water	Solvent extraction on triple quad GCMSMS - GCMS with triple quad mass spectrometric detection with TSQ9000	EPA Method 8081 along with In house development with Manufacturer Applications Engineer using SOP 575	
		0.006 to 0.125 ug/L	Potable Water	Solvent extraction on triple quad GCMSMS - GCMS with triple quad mass spectrometric detection with TSQ9000	EPA Method 8081 along with In house development with Manufacturer Applications Engineer using SOP 575	
	Chloropropham	0.001 to 0.125 ug/L	Groundwater	Solvent extraction on triple quad GCMSMS - GCMS with triple quad mass spectrometric detection with TSQ9000	EPA Method 8081 along with In house development with Manufacturer Applications Engineer using SOP 575	
			0.001 to 0.125 ug/L	Surface Water	Solvent extraction on triple quad GCMSMS - GCMS with triple quad mass spectrometric detection with TSQ9000	EPA Method 8081 along with In house development with Manufacturer Applications Engineer using SOP 575
			0.0043 to 0.125 ug/L	Potable Water	Solvent extraction on triple quad GCMSMS -	EPA Method 8081 along with In house

			GCMS with triple quad mass spectrometric detection with TSQ9000	development with Manufacturer Applications Engineer using SOP 575
Chlorothalonil	0.001 to 0.125 ug/L	Surface Water	Solvent extraction on triple quad GCMSMS - GCMS with triple quad mass spectrometric detection with TSQ9000	EPA Method 8081 along with In house development with Manufacturer Applications Engineer using SOP 575
	0.002 to 0.125 ug/L	Groundwater	Solvent extraction on triple quad GCMSMS - GCMS with triple quad mass spectrometric detection with TSQ9000	EPA Method 8081 along with In house development with Manufacturer Applications Engineer using SOP 575
	0.007 to 0.125 ug/L	Potable Water	Solvent extraction on triple quad GCMSMS - GCMS with triple quad mass spectrometric detection with TSQ9000	EPA Method 8081 along with In house development with Manufacturer Applications Engineer using SOP 575
Cypermethrin	0.001 to 0.125 ug/L	Surface Water	Solvent extraction on triple quad GCMSMS - GCMS with triple quad mass spectrometric detection with TSQ9000	EPA Method 8081 along with In house development with Manufacturer Applications Engineer using SOP 575
	0.007 to 0.125 ug/L	Potable Water	Solvent extraction on triple quad GCMSMS - GCMS with triple quad mass spectrometric detection with TSQ9000	EPA Method 8081 along with In house development with Manufacturer Applications Engineer using SOP 575
	0.010 to 0.125 ug/L	Groundwater	Solvent extraction on triple quad GCMSMS - GCMS with triple quad mass spectrometric detection with TSQ9000	EPA Method 8081 along with In house development with Manufacturer Applications Engineer using SOP 575

Dichlobenil	0.001 to 0.125 ug/L	Groundwater	Solvent extraction on triple quad GCMSMS - GCMS with triple quad mass spectrometric detection with TSQ9000	EPA Method 8081 along with In house development with Manufacturer Applications Engineer using SOP 575
	0.001 to 0.125 ug/L	Surface Water	Solvent extraction on triple quad GCMSMS - GCMS with triple quad mass spectrometric detection with TSQ9000	EPA Method 8081 along with In house development with Manufacturer Applications Engineer using SOP 575
	0.002 to 0.125 ug/L	Potable Water	Solvent extraction on triple quad GCMSMS - GCMS with triple quad mass spectrometric detection with TSQ9000	EPA Method 8081 along with In house development with Manufacturer Applications Engineer using SOP 575
Dieldrin	0.006 to 0.125 ug/L	Groundwater	Solvent extraction on triple quad GCMSMS - GCMS with triple quad mass spectrometric detection with TSQ9000	EPA Method 8081 along with In house development with Manufacturer Applications Engineer using SOP 575
	0.006 to 0.125 ug/L	Potable Water	Solvent extraction on triple quad GCMSMS - GCMS with triple quad mass spectrometric detection with TSQ9000	EPA Method 8081 along with In house development with Manufacturer Applications Engineer using SOP 575
	0.010 to 0.125 ug/L	Surface Water	Solvent extraction on triple quad GCMSMS - GCMS with triple quad mass spectrometric detection with TSQ9000	EPA Method 8081 along with In house development with Manufacturer Applications Engineer using SOP 575
Endosulfan I (Alpha)	0.003 to 0.125 ug/L	Groundwater	Solvent extraction on triple quad GCMSMS - GCMS with triple quad mass spectrometric	EPA Method 8081 along with In house development with Manufacturer

			detection with TSQ9000	Applications Engineer using SOP 575
	0.009 to 0.125 ug/L	Surface Water	Solvent extraction on triple quad GCMSMS - GCMS with triple quad mass spectrometric detection with TSQ9000	EPA Method 8081 along with In house development with Manufacturer Applications Engineer using SOP 575
	0.029 to 0.125 ug/L	Potable Water	Solvent extraction on triple quad GCMSMS - GCMS with triple quad mass spectrometric detection with TSQ9000	EPA Method 8081 along with In house development with Manufacturer Applications Engineer using SOP 575
Endosulfan II (Beta)	0.004 to 0.125 ug/L	Surface Water	Solvent extraction on triple quad GCMSMS - GCMS with triple quad mass spectrometric detection with TSQ9000	EPA Method 8081 along with In house development with Manufacturer Applications Engineer using SOP 575
	0.005 to 0.125 ug/L	Groundwater	Solvent extraction on triple quad GCMSMS - GCMS with triple quad mass spectrometric detection with TSQ9000	EPA Method 8081 along with In house development with Manufacturer Applications Engineer using SOP 575
	0.008 to 0.125 ug/L	Potable Water	Solvent extraction on triple quad GCMSMS - GCMS with triple quad mass spectrometric detection with TSQ9000	EPA Method 8081 along with In house development with Manufacturer Applications Engineer using SOP 575
Endosulfan sulphate	0.002 to 0.125 ug/L	Groundwater	Solvent extraction on triple quad GCMSMS - GCMS with triple quad mass spectrometric detection with TSQ9000	EPA Method 8081 along with In house development with Manufacturer Applications Engineer using SOP 575
	0.002 to 0.125 ug/L	Surface Water	Solvent extraction on triple quad GCMSMS - GCMS with triple quad	EPA Method 8081 along with In house development with

			mass spectrometric detection with TSQ9000	Manufacturer Applications Engineer using SOP 575
	0.007 to 0.125 ug/L	Potable Water	Solvent extraction on triple quad GCMSMS - GCMS with triple quad mass spectrometric detection with TSQ9000	EPA Method 8081 along with In house development with Manufacturer Applications Engineer using SOP 575
Endrin	0.002 to 0.125 ug/L	Groundwater	Solvent extraction on triple quad GCMSMS - GCMS with triple quad mass spectrometric detection with TSQ9000	EPA Method 8081 along with In house development with Manufacturer Applications Engineer using SOP 575
	0.004 to 0.125 ug/L	Surface Water	Solvent extraction on triple quad GCMSMS - GCMS with triple quad mass spectrometric detection with TSQ9000	EPA Method 8081 along with In house development with Manufacturer Applications Engineer using SOP 575
	0.011 to 0.125 ug/L	Potable Water	Solvent extraction on triple quad GCMSMS - GCMS with triple quad mass spectrometric detection with TSQ9000	EPA Method 8081 along with In house development with Manufacturer Applications Engineer using SOP 575
Endrin Aldehyde	0.002 to 0.125 ug/L	Groundwater	Solvent extraction on triple quad GCMSMS - GCMS with triple quad mass spectrometric detection with TSQ9000	EPA Method 8081 along with In house development with Manufacturer Applications Engineer using SOP 575
	0.004 to 0.125 ug/L	Surface Water	Solvent extraction on triple quad GCMSMS - GCMS with triple quad mass spectrometric detection with TSQ9000	EPA Method 8081 along with In house development with Manufacturer Applications Engineer using SOP 575
	0.007 to 0.125 ug/L	Potable Water	Solvent extraction on triple quad GCMSMS -	EPA Method 8081 along with In house

			GCMS with triple quad mass spectrometric detection with TSQ9000	development with Manufacturer Applications Engineer using SOP 575
HCH-alpha	0.0003 to 0.125 ug/L	Surface Water	Solvent extraction on triple quad GCMSMS - GCMS with triple quad mass spectrometric detection with TSQ9000	EPA Method 8081 along with In house development with Manufacturer Applications Engineer using SOP 575
	0.001 to 0.125 ug/L	Groundwater	Solvent extraction on triple quad GCMSMS - GCMS with triple quad mass spectrometric detection with TSQ9000	EPA Method 8081 along with In house development with Manufacturer Applications Engineer using SOP 575
	0.003 to 0.125 ug/L	Potable Water	Solvent extraction on triple quad GCMSMS - GCMS with triple quad mass spectrometric detection with TSQ9000	EPA Method 8081 along with In house development with Manufacturer Applications Engineer using SOP 575
HCH-beta	0.001 to 0.125 ug/L	Groundwater	Solvent extraction on triple quad GCMSMS - GCMS with triple quad mass spectrometric detection with TSQ9000	EPA Method 8081 along with In house development with Manufacturer Applications Engineer using SOP 575
	0.0011 to 0.125 ug/L	Surface Water	Solvent extraction on triple quad GCMSMS - GCMS with triple quad mass spectrometric detection with TSQ9000	EPA Method 8081 along with In house development with Manufacturer Applications Engineer using SOP 575
	0.004 to 0.125 ug/L	Potable Water	Solvent extraction on triple quad GCMSMS - GCMS with triple quad mass spectrometric detection with TSQ9000	EPA Method 8081 along with In house development with Manufacturer Applications Engineer using SOP 575

HCH-delta	0.001 to 0.125 ug/L	Groundwater	Solvent extraction on triple quad GCMSMS - GCMS with triple quad mass spectrometric detection with TSQ9000	EPA Method 8081 along with In house development with Manufacturer Applications Engineer using SOP 575
	0.002 to 0.125 ug/L	Surface Water	Solvent extraction on triple quad GCMSMS - GCMS with triple quad mass spectrometric detection with TSQ9000	EPA Method 8081 along with In house development with Manufacturer Applications Engineer using SOP 575
	0.005 to 0.125 ug/L	Potable Water	Solvent extraction on triple quad GCMSMS - GCMS with triple quad mass spectrometric detection with TSQ9000	EPA Method 8081 along with In house development with Manufacturer Applications Engineer using SOP 575
HCH-gamma (Lindane)	0.001 to 0.125 ug/L	Groundwater	Solvent extraction on triple quad GCMSMS - GCMS with triple quad mass spectrometric detection with TSQ9000	EPA Method 8081 along with In house development with Manufacturer Applications Engineer using SOP 575
	0.003 to 0.125 ug/L	Potable Water	Solvent extraction on triple quad GCMSMS - GCMS with triple quad mass spectrometric detection with TSQ9000	EPA Method 8081 along with In house development with Manufacturer Applications Engineer using SOP 575
	0.005 to 0.125 ug/L	Surface Water	Solvent extraction on triple quad GCMSMS - GCMS with triple quad mass spectrometric detection with TSQ9000	EPA Method 8081 along with In house development with Manufacturer Applications Engineer using SOP 575
Heptachlor	0.002 to 0.125 ug/L	Surface Water	Solvent extraction on triple quad GCMSMS - GCMS with triple quad mass spectrometric	EPA Method 8081 along with In house development with Manufacturer

			detection with TSQ9000	Applications Engineer using SOP 575
	0.005 to 0.125 ug/L	Potable Water	Solvent extraction on triple quad GCMSMS - GCMS with triple quad mass spectrometric detection with TSQ9000	EPA Method 8081 along with In house development with Manufacturer Applications Engineer using SOP 575
	0.010 to 0.125 ug/L	Groundwater	Solvent extraction on triple quad GCMSMS - GCMS with triple quad mass spectrometric detection with TSQ9000	EPA Method 8081 along with In house development with Manufacturer Applications Engineer using SOP 575
Heptachlor epoxide	0.002 to 0.125 ug/L	Surface Water	Solvent extraction on triple quad GCMSMS - GCMS with triple quad mass spectrometric detection with TSQ9000	EPA Method 8081 along with In house development with Manufacturer Applications Engineer using SOP 575
	0.003 to 0.125 ug/L	Potable Water	Solvent extraction on triple quad GCMSMS - GCMS with triple quad mass spectrometric detection with TSQ9000	EPA Method 8081 along with In house development with Manufacturer Applications Engineer using SOP 575
	0.004 to 0.125 ug/L	Groundwater	Solvent extraction on triple quad GCMSMS - GCMS with triple quad mass spectrometric detection with TSQ9000	EPA Method 8081 along with In house development with Manufacturer Applications Engineer using SOP 575
Hexachlorobenzene	0.004 to 0.125 ug/L	Groundwater	Solvent extraction on triple quad GCMSMS - GCMS with triple quad mass spectrometric detection with TSQ9000	EPA Method 8081 along with In house development with Manufacturer Applications Engineer using SOP 575
	0.007 to 0.125 ug/L	Potable Water	Solvent extraction on triple quad GCMSMS - GCMS with triple quad	EPA Method 8081 along with In house development with

			mass spectrometric detection with TSQ9000	Manufacturer Applications Engineer using SOP 575
	0.010 to 0.125 ug/L	Surface Water	Solvent extraction on triple quad GCMSMS - GCMS with triple quad mass spectrometric detection with TSQ9000	EPA Method 8081 along with In house development with Manufacturer Applications Engineer using SOP 575
Metaldehyde	0.015 to 0.125 ug/L	Groundwater	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L Level Utilizing Online Sample Preparation with LC- MS along with in house development with Thermo Applications Engineer using SOP 557
	0.015 to 0.125 ug/L	Potable Water	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L Level Utilizing Online Sample Preparation with LC- MS along with in house development with Thermo Applications Engineer using SOP 557
	0.015 to 0.125 ug/L	Surface Water	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L Level Utilizing Online Sample Preparation with LC- MS along with in house development

				with Thermo Applications Engineer using SOP 557
o,p DDT	0.001 to 0.125 ug/L	Groundwater	Solvent extraction on triple quad GCMSMS - GCMS with triple quad mass spectrometric detection with TSQ9000	EPA Method 8081 along with In house development with Manufacturer Applications Engineer using SOP 575
	0.001 to 0.125 ug/L	Surface Water	Solvent extraction on triple quad GCMSMS - GCMS with triple quad mass spectrometric detection with TSQ9000	EPA Method 8081 along with In house development with Manufacturer Applications Engineer using SOP 575
	0.003 to 0.125 ug/L	Potable Water	Solvent extraction on triple quad GCMSMS - GCMS with triple quad mass spectrometric detection with TSQ9000	EPA Method 8081 along with In house development with Manufacturer Applications Engineer using SOP 575
trans Permethrin	0.001 to 0.125 ug/L	Surface Water	Solvent extraction on triple quad GCMSMS - GCMS with triple quad mass spectrometric detection with TSQ9000	EPA Method 8081 along with In house development with Manufacturer Applications Engineer using SOP 575
	0.002 to 0.125 ug/L	Groundwater	Solvent extraction on triple quad GCMSMS - GCMS with triple quad mass spectrometric detection with TSQ9000	EPA Method 8081 along with In house development with Manufacturer Applications Engineer using SOP 575
	0.004 to 0.125 ug/L	Potable Water	Solvent extraction on triple quad GCMSMS - GCMS with triple quad mass spectrometric detection with TSQ9000	EPA Method 8081 along with In house development with Manufacturer Applications Engineer using SOP 575

Determination of Pesticides Negative LC Suite	Bentazone	0.001 to 0.25 ug/L	Groundwater	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 543
		0.002 to 0.25 ug/L	Surface Water	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 543
		0.007 to 0.25 ug/L	Potable Water	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC-MS/MS along with in house development with Manufacturer Applications Engineer using SOP 543
	Bromoxynil	0.002 to 0.25 ug/L	Groundwater	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC-

				MS/MS along with in house development with Manufacturer Applications Engineer using SOP 543
		0.002 to 0.25 ug/L	Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 543
		0.007 to 0.25 ug/L	Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 543
	Clopyralid	0.002 to 0.25 ug/L	detection (MSD) in multiple reaction mode (MRM)	and Personal Care Products in Water at

		0.002 to 0.25 ug/L	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 543
		0.007 to 0.25 ug/L	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 543
	Dicamba	0.003 to 0.25 ug/L	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 543
		0.003 to 0.25 ug/L	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC-

					MS/MS along with in house development with Manufacturer Applications Engineer using SOP 543
		0.003 to 0.25 ug/L	Surface Water	spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 543
	Dichlorprop-P	0.0036 to 0.25 ug/L	Potable Water	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 543
		0.005 to 0.25 ug/L	Groundwater	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 543

	0.005 to 0.25 ug/L	Surface Water	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 543
Fenoprop	0.001 to 0.25 ug/L	Groundwater	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 543
	0.0011 to 0.25 ug/L	Surface Water	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 543
	0.003 to 0.25 ug/L	Potable Water	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC-

				MS/MS along with in house development with Manufacturer Applications Engineer using SOP 543
	Fluroxypyr	0.001 to 0.25 ug/L	multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 543
		0.002 to 0.25 ug/L		Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 543
		0.010 to 0.25 ug/L	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 543

MCPA	0.0009 to 0.25 ug/L	Surface Water	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 543
	0.0023 to 0.25 ug/L	Groundwater	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 543
	0.0030 to 0.25 ug/L	Potable Water	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 543
MCPB	0.002 to 0.25 ug/L	Surface Water	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC-

				MS/MS along with in house development with Manufacturer Applications Engineer using SOP 543
		0.003 to 0.25 ug/L	detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 543
		0.010 to 0.25 ug/L	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 543
	Mecoprop	0.0012 to 0.25 ug/L	detection (MSD) in	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 543

	0.0024 to 0.25 ug/L	Groundwater	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 543
	0.0037 to 0.25 ug/L	Potable Water	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC-MS/MS along with in house development with Manufacturer Applications Engineer using SOP 543
PentaChloroPhenol	0.001 to 0.25 ug/L	Groundwater	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC-MS/MS along with in house development with Manufacturer Applications Engineer using SOP 543
	0.002 to 0.25 ug/L	Surface Water	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC-

				MS/MS along with in house development with Manufacturer Applications Engineer using SOP 543
		0.007 to 0.25 ug/L	Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 543
	Picloram	0.002 to 0.25 ug/L	Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 543
		0.002 to 0.25 ug/L	Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 543

		0.007 to 0.25 ug/L	spectrometric detection (MSD) in	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 543
	Triclopyr	0.0013 to 0.25 ug/L		Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 543
		0.0013 to 0.25 ug/L	spectrometric detection (MSD) in	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 543
		0.0040 to 0.25 ug/L	spectrometric detection (MSD) in	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC-

				MS/MS along with in house development with Manufacturer Applications Engineer using SOP 543
2,3,6 Trichlorobenzoic acid	0.005 to 0.25 ug/L	Groundwater	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 543
	0.005 to 0.25 ug/L	Surface Water	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 543
	0.017 to 0.25 ug/L	Potable Water	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 543

2,4,5-T	0.0007 to 0.25 ug/L	Groundwater	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC-MS/MS along with in house development with Manufacturer Applications Engineer using SOP 543
	0.0013 to 0.25 ug/L	Surface Water	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC-MS/MS along with in house development with Manufacturer Applications Engineer using SOP 543
	0.003 to 0.25 ug/L	Potable Water	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC-MS/MS along with in house development with Manufacturer Applications Engineer using SOP 543
2,4-D	0.0006 to 0.25 ug/L	Groundwater	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	and Personal Care Products in Water at

				MS/MS along with in house development with Manufacturer Applications Engineer using SOP 543
		0.0008 to 0.25 ug/L	spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 543
		0.0040 to 0.25 ug/L	detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 543
	Benazolin	0.005 to 0.25 ug/L	detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 543

		0.005 to 0.25 ug/L	Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 543
		0.016 to 0.25 ug/L	spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 543
esticides Positive LC	Asulam H	0.0018 to 0.25 ug/L	spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
		0.0026 to 0.25 ug/L	multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC-

				MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
		0.007 to 0.25 ug/L	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
	Atrazine	0.0005 to 0.25 ug/L	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
		0.001 to 0.25 ug/L	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540

	0.003 to 0.25 ug/L	Potable Water	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
Boscalid	0.0008 to 0.25 ug/L	Surface Water	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
	0.002 to 0.25 ug/L	Groundwater	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
	0.003 to 0.25 ug/L	Potable Water	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC-

					MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
		0.001 to 0.25 ug/L	Surface Water	spectrometric detection (MSD) in	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
		0.002 to 0.25 ug/L	Groundwater	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
		0.007 to 0.25 ug/L	Potable Water	spectrometric detection (MSD) in	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540

Carbaryl	0.001 to 0.25 ug/L	Surface Water	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
	0.002 to 0.25 ug/L	Groundwater	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
	0.003 to 0.25 ug/L	Potable Water	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
Carbetamide	0.001 to 0.25 ug/L	Surface Water	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC-

				MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
	0.002 to 0.25 ug/L		spectrometric detection (MSD) in	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
	0.003 to 0.25 ug/L	Potable Water	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
Chlorfenvinphos-B	0.001 to 0.25 ug/L		spectrometric detection (MSD) in	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540

			0.001 to 0.25 ug/L	spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540			
	Chlo		0.007 to 0.25 ug/L	spectrometric detection (MSD) in multiple reaction mode (MRM)	with Manufacturer Applications Engineer using SOP 540 Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample oreparation with LC- MS/MS along with in nouse development with Manufacturer Applications Engineer using SOP 540 Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample oreparation with LC- MS/MS along with in			
		Chlortoluron	0.001 to 0.25 ug/L	spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540			
			0.001 to 0.25 ug/L	spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC-			

				MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
		0.007 to 0.25 ug/L	Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
	Cyproconazole	0.001 to 0.25 ug/L	spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
		0.001 to 0.25 ug/L	Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540

		0.003 to 0.25 ug/L	Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
	Diazinon	0.005 to 0.25 ug/L	Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
		0.006 to 0.25 ug/L	Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
		0.020 to 0.25 ug/L	Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC-

				MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
	Diflufenican	0.003 to 0.25 ug/L	spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
		0.003 to 0.25 ug/L		Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
		0.010 to 0.25 ug/L	spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540

Dimethoate	0.001 to 0.25 ug/L	Groundwater	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
	0.002 to 0.25 ug/L	Surface Water	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
	0.007 to 0.25 ug/L	Potable Water	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
Diuron	0.0004 to 0.25 ug/L	Surface Water	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC-

				MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
		0.0008 to 0.25 ug/L	detection (MSD) in multiple reaction mode (MRM)	and Personal Care Products in Water at
		0.003 to 0.25 ug/L	detection (MSD) in multiple reaction mode (MRM)	and Personal Care Products in Water at
	Epoxiconazole	0.001 to 0.25 ug/L	detection (MSD) in multiple reaction mode (MRM)	and Personal Care Products in Water at

	0.001 to 0.25 ug/L	Surface Water	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
	0.003 to 0.25 ug/L	Potable Water	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
Fenpropidin	0.001 to 0.25 ug/L	Groundwater	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
	0.001 to 0.25 ug/L	Surface Water	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	and Personal Care Products in Water at

				MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
		0.007 to 0.25 ug/L	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
	Fenpropimorph	0.001 to 0.25 ug/L	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
		0.001 to 0.25 ug/L	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540

		0.007 to 0.25 ug/L		(MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
	Flutriafol	0.001 to 0.25 ug/L	Groundwater	(MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
		0.002 to 0.25 ug/L		(MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
		0.010 to 0.25 ug/L		LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at

				MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
	Isoproturon	0.0005 to 0.25 ug/L	spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
		0.001 to 0.25 ug/L	` ,	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
		0.003 to 0.25 ug/L	spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540

Kresoxim-methyl	0.001 to 0.25 ug/L	Groundwater	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
	0.002 to 0.25 ug/L	Surface Water	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
	0.007 to 0.25 ug/L	Potable Water	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
Linuron	0.0005 to 0.25 ug/L	Surface Water	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC-

					MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
		0.002 to 0.25 ug/L	Groundwater	spectrometric detection (MSD) in	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
		0.003 to 0.25 ug/L	Potable Water	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
	Malathion	0.001 to 0.25 ug/L	Groundwater	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540

		G The second sec	(MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
		0.007 to 0.25 ug/L	multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
	Metalaxyl	0.001 to 0.25 ug/L	spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
		0.001 to 0.25 ug/L		Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC-

				MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
		0.007 to 0.25 ug/L	Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
	Metamitron	0.0007 to 0.25 ug/L	Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
		0.002 to 0.25 ug/L	Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540

	0.005 to 0.25 ug/L		LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
Metazachlor	0.001 to 0.25 ug/L	Groundwater	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
	0.007 to 0.25 ug/L	Potable Water	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
	0.014 to 0.25 ug/L	Surface Water	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC-

				MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
	Metoxuron	0.001 to 0.25 ug/L	spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
		0.001 to 0.25 ug/L	` ,	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
		0.003 to 0.25 ug/L	spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540

Mevinphos	0.002 to 0.25 ug/L	Groundwater	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
	0.002 to 0.25 ug/L	Surface Water	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
	0.003 to 0.25 ug/L	Potable Water	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
Monuron	0.001 to 0.25 ug/L	Groundwater	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC-

				MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
	0.001 to 0.25 ug/L	Surface Water	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
	0.007 to 0.25 ug/L	Potable Water	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
Pendimethalin	0.002 to 0.25 ug/L	Surface Water	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540

		0.003 to 0.25 ug/L	Groundwater	(MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
		0.007 to 0.25 ug/L	Potable Water	,	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
Topazillo	Propazine	0.0009 to 0.25 ug/L	Surface Water	(MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
		0.002 to 0.25 ug/L	Groundwater	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC-

				MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
		0.003 to 0.25 ug/L	Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
	Propiconazole	0.001 to 0.25 ug/L	Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
		0.002 to 0.25 ug/L	Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	and Personal Care Products in Water at

	0.003 to 0.25 ug/L	Potable Water	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
Propyzamide	0.001 to 0.25 ug/L	Groundwater	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
	0.001 to 0.25 ug/L	Surface Water	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
	0.007 to 0.25 ug/L	Potable Water	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC-

				MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
	Quinmerac	0.003 to 0.25 ug/L		Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
		0.007 to 0.25 ug/L	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
		0.015 to 0.25 ug/L	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540

Simazine	0.001 to 0.25 ug/L	Groundwater	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
	0.001 to 0.25 ug/L	Surface Water	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
	0.003 to 0.25 ug/L	Potable Water	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
Sulfotep	0.001 to 0.25 ug/L	Surface Water	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC-

				MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
		0.002 to 0.25 ug/L	Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
		0.003 to 0.25 ug/L	Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
	Tebuconazole	0.001 to 0.25 ug/L	Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540

	0.001 to 0.25 ug/L		LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
	0.003 to 0.25 ug/L	Potable Water	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
Triadimefon	0.001 to 0.25 ug/L		LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
	0.001 to 0.25 ug/L	Surface Water	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC-

					MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
			0.003 to 0.25 ug/L	Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	and Personal Care Products in Water at
	Triallate	0.003 to 0.25 ug/L	Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540	
			0.005 to 0.25 ug/L	Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	and Personal Care Products in Water at

	0.013 to 0.25 ug/L	Potable Water	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
2,6-Dichlorobenzamide	0.001 to 0.25 ug/L	Groundwater	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC-MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
	0.001 to 0.25 ug/L	Surface Water	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC- MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
	0.003 to 0.25 ug/L	Potable Water	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Quantification of EPA 1694 Pharmaceuticals and Personal Care Products in Water at the ng/L level utilizing online sample preparation with LC-

	1					-
						MS/MS along with in house development with Manufacturer Applications Engineer using SOP 540
9	Determination of Metals by ICP-MS	Aluminium	12 to 1000 ug/L (extended by dilution)	Industrial Effluent	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
			14 to 1000 ug/L (extended by dilution)	Sewage Effluent	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
			3 to 1000 ug/L (extended by dilution)	Surface Water	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
			8 to 1000 ug/L (extended by dilution)	Groundwater	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
			9 to 1000 ug/L (extended by dilution)	Potable Water	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
		Antimony	2 to 1000 ug/L (extended by dilution)	Industrial Effluent	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
			2 to 1000 ug/L (extended by dilution)	Sewage Effluent	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177

	2.0 to 1000 ug/L (extended by dilution)	Potable Water	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
	3 to 1000 ug/L (extended by dilution)	Surface Water	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
	4 to 1000 ug/L (extended by dilution)	Groundwater	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
Arsenic	1 to 1000 ug/L (extended by dilution)	Groundwater	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
	1 to 1000 ug/L (extended by dilution)	Industrial Effluent	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
	1 to 1000 ug/L (extended by dilution)	Sewage Effluent	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
	1 to 1000 ug/L (extended by dilution)	Surface Water	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
	2 to 1000 ug/L (extended by dilution)	Potable Water	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177

		T	Ī	<u> </u>
Barium	1 to 1000 ug/L (extended by dilution)	Potable Water	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
	2 to 1000 ug/L (extended by dilution)	Groundwater	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
	2 to 1000 ug/L (extended by dilution)	Surface Water	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
	3 to 1000 ug/L (extended by dilution)	Industrial Effluent	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
	4 to 1000 ug/L (extended by dilution)	Sewage Effluent	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
Beryllium	1 to 1000 ug/L (extended by dilution)	Groundwater	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
	1 to 1000 ug/L (extended by dilution)	Industrial Effluent	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
	1 to 1000 ug/L (extended by dilution)	Potable Water	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177

	1 to 1000 ug/L (extended by dilution)	Sewage Effluent	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
	1 to 1000 ug/L (extended by dilution)	Surface Water	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
Boron	0.020 to 100 mg/L (extended by dilution)	Potable Water	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
	10 to 1000 ug/L (extended by dilution)	Industrial Effluent	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
	16 to 1000 ug/L (extended by dilution)	Groundwater	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
	8 to 1000 ug/L (extended by dilution)	Sewage Effluent	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
	9 to 1000 ug/L (extended by dilution)	Surface Water	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
Cadmium	1 to 1000 ug/L (extended by dilution)	Groundwater	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177

	1 to 1000 ug/L (extended by dilution)	Industrial Effluent	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
	1 to 1000 ug/L (extended by dilution)	Potable Water	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
	1 to 1000 ug/L (extended by dilution)	Sewage Effluent	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
	1 to 1000 ug/L (extended by dilution)	Surface Water	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
Calcium	0.4 to 100 mg/L (extended by dilution)	Sewage Effluent	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3120 B using SOP 184
	0.6 to 100 mg/L (extended by dilution)	Industrial Effluent	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3120 B using SOP 184
	0.6 to 100 mg/L (extended by dilution)	Surface Water	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3120 B using SOP 184
	0.9 to 100 mg/L (extended by dilution)	Groundwater	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3120 B using SOP 184

	1 to 100 mg/L (extended by dilution)	Potable Water	ICP-MS	SOP 184 Standard Method for the Examination of Water and Wastewater Method 3120 B Edition 23
Cesium	1 to 1000 ug/L (extended by dilution)	Groundwater	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
	1 to 1000 ug/L (extended by dilution)	Industrial Effluent	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
	1 to 1000 ug/L (extended by dilution)	Potable Water	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
	1 to 1000 ug/L (extended by dilution)	Sewage Effluent	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
	2 to 1000 ug/L (extended by dilution)	Surface Water	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
Chromium	1 to 1000 ug/L (extended by dilution)	Industrial Effluent	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
	1 to 1000 ug/L (extended by dilution)	Sewage Effluent	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177

	1 to 1000 ug/L (extended by dilution)	Surface Water	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
	2 to 1000 ug/L (extended by dilution)	Groundwater	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
	4 to 1000 ug/L (extended by dilution)	Potable Water	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
Cobalt	1 to 1000 ug/L (extended by dilution)	Groundwater	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
	1 to 1000 ug/L (extended by dilution)	Industrial Effluent	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
	1 to 1000 ug/L (extended by dilution)	Potable Water	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
	1 to 1000 ug/L (extended by dilution)	Sewage Effluent	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
	1 to 1000 ug/L (extended by dilution)	Surface Water	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177

Copper	0.003 to 100 mg/L (extended by dilution)	Potable Water	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
	1 to 1000 ug/L (extended by dilution)	Groundwater	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
	2 to 1000 ug/L (extended by dilution)	Surface Water	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
	3 to 1000 ug/L (extended by dilution)	Industrial Effluent	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
	6 to 1000 ug/L (extended by dilution)	Sewage Effluent	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
Gallium	1 to 1000 ug/L (extended by dilution)	Groundwater	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
	1 to 1000 ug/L (extended by dilution)	Industrial Effluent	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
	1 to 1000 ug/L (extended by dilution)	Potable Water	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177

	1 to 1000 ug/L (extended by dilution)	Sewage Effluent	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
	1 to 1000 ug/L (extended by dilution)	Surface Water	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
Iron	14 to 1000 ug/L (extended by dilution)	Potable Water	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
	22 to 1000 ug/L (extended by dilution)	Industrial Effluent	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
	25 to 1000 ug/L (extended by dilution)	Sewage Effluent	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
	3 to 1000 ug/L (extended by dilution)	Surface Water	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
	8 to 1000 ug/L (extended by dilution)	Groundwater	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
Lead	1 to 1000 ug/L (extended by dilution)	Groundwater	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177

	1 to 1000 ug/L (extended by dilution)	Industrial Effluent	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
	1 to 1000 ug/L (extended by dilution)	Potable Water	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
	1 to 1000 ug/L (extended by dilution)	Sewage Effluent	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
	1 to 1000 ug/L (extended by dilution)	Surface Water	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
Lithium	1 to 1000 ug/L (extended by dilution)	Industrial Effluent	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
	2 to 1000 ug/L (extended by dilution)	Groundwater	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
	2 to 1000 ug/L (extended by dilution)	Sewage Effluent	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
	4 to 1000 ug/L (extended by dilution)	Potable Water	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177

		4 to 1000 ug/L (extended by dilution)	Surface Water	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
	Magnesium	0.1 to 100 mg/L (extended by dilution)	Groundwater	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3120 B using SOP 184
		0.1 to 100 mg/L (extended by dilution)	Industrial Effluent	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3120 B using SOP 184
M		0.1 to 100 mg/L (extended by dilution)	Sewage Effluent	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3120 B using SOP 184
		0.1 to 100 mg/L (extended by dilution)	Surface Water	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3120 B using SOP 184
		0.5 to 100 mg/L (extended by dilution)	Potable Water	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3120 B using SOP 184
	langanese 1 to 1000 ug/L (extended by dilution	1 to 1000 ug/L (extended by dilution)	Groundwater	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
		1 to 1000 ug/L (extended by dilution)	Surface Water	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177

	10 to 1000 ug/l	Industrial Effluent	ICD MC	Standard Method for
	18 to 1000 ug/L (extended by dilution)	Industrial Effluent	ICP-MS	the Examination of Water and Wastewater Method 3125B using SOP 177
	3 to 1000 ug/L (extended by dilution)	Potable Water	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
	3 to 1000 ug/L (extended by dilution)	Sewage Effluent	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
Mercury	0.08 to 5 ug/L (extended by dilution)	Industrial Effluent	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 178
	0.10 to 5 ug/L (extended by dilution)	Sewage Effluent	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 178
	0.22 to 5 ug/L (extended by dilution)	Surface Water	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 178
	0.24 to 5 ug/L (extended by dilution)	Potable Water	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 178
	0.28 to 5 ug/L (extended by dilution)	Groundwater	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 178

		0.24 to 5 ug/L (extended by dilution	Potable Water	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 178
	Nickel	1 to 1000 ug/L (extended by dilution)	Groundwater	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
		1 to 1000 ug/L (extended by dilution)	Surface Water	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
		2 to 1000 ug/L (extended by dilution)	Industrial Effluent	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
F		2 to 1000 ug/L (extended by dilution)	Potable Water	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
		2 to 1000 ug/L (extended by dilution)	Sewage Effluent	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
	Potassium	0.1 to 100 mg/L (extended by dilution)	Groundwater	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3120 B using SOP 184
		0.1 to 100 mg/L (extended by dilution)	Industrial Effluent	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3120 B using SOP 184

	0.1 to 100 mg/L (extended by dilution)	Sewage Effluent	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3120 B using SOP 184
	0.1 to 100 mg/L (extended by dilution)	Surface Water	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3120 B using SOP 184
	1 to 100 mg/L (extended by dilution)	Potable Water	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3120 B using SOP 184
Rubidium	1 to 1000 ug/L (extended by dilution)	Groundwater	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
	1 to 1000 ug/L (extended by dilution)	Potable Water	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
	1 to 1000 ug/L (extended by dilution)	Sewage Effluent	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
	24 to 1000 ug/L (extended by dilution)	Surface Water	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
	7 to 1000 ug/L (extended by dilution)	Industrial Effluent	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177

Selenium	1 to 1000 ug/L (extended by dilution)	Groundwater	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
	1 to 1000 ug/L (extended by dilution)	Sewage Effluent	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
	1 to 1000 ug/L (extended by dilution)	Surface Water	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
	3 to 1000 ug/L (extended by dilution)	Industrial Effluent	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
	3 to 1000 ug/L (extended by dilution)	Potable Water	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
Silver	0.27 to 1000 ug/L (extended by dilution)	Sewage Effluent	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
	0.35 to 1000 ug/L (extended by dilution)	Industrial Effluent	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
	0.42 to 1000 ug/L (extended by dilution)	Surface Water	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177

	0.60 to 1000 ···~//	Groundwater	ICP-MS	Standard Method for
	0.60 to 1000 ug/L (extended by dilution)	Groundwater	TCP-IVIS	the Examination of Water and Wastewater Method 3125B using SOP 177
	1 to 1000 ug/L (extended by dilution)	Potable Water	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
Sodium	0.1 to 100 mg/L (extended by dilution)	Groundwater	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3120 B using SOP 184
	0.2 to 100 mg/L (extended by dilution)	Surface Water	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3120 B using SOP 184
	1 to 100 mg/L (extended by dilution)	Industrial Effluent	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3120 B using SOP 184
	1.1 to 100 mg/L (extended by dilution)	Sewage Effluent	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3120 B using SOP 184
	4.9 to 100 mg/L (extended by dilution)	Potable Water	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3120 B using SOP 184
Strontium	12 to 1000 ug/L (extended by dilution)	Groundwater	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177

	24 to 1000 ug/L (extended by dilution)	Potable Water	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
	25 to 1000 ug/L (extended by dilution)	Surface Water	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
	3 to 1000 ug/L (extended by dilution)	Sewage Effluent	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
	43 to 1000 ug/L (extended by dilution)	Industrial Effluent	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
Thallium	1 to 1000 ug/L (extended by dilution)	Groundwater	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
	1 to 1000 ug/L (extended by dilution)	Industrial Effluent	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
	1 to 1000 ug/L (extended by dilution)	Potable Water	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
	1 to 1000 ug/L (extended by dilution)	Sewage Effluent	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177

		1 to 1000 ug/L (extended by dilution)	Surface Water	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
•	Tin	1 to 1000 ug/L (extended by dilution)	Groundwater	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
		1 to 1000 ug/L (extended by dilution)	Industrial Effluent	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
		1 to 1000 ug/L (extended by dilution)	Sewage Effluent	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
		1 to 1000 ug/L (extended by dilution)	Surface Water	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
		3 to 1000 ug/L (extended by dilution)	Potable Water	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
	Uranium	1 to 1000 ug/L (extended by dilution)	Groundwater	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
		1 to 1000 ug/L (extended by dilution)	Industrial Effluent	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177

	1 to 1000 ug/L (extended by dilution)	Potable Water	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
	1 to 1000 ug/L (extended by dilution)	Sewage Effluent	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
	1 to 1000 ug/L (extended by dilution)	Surface Water	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
Vanadium	1 to 1000 ug/L (extended by dilution)	Groundwater	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
	1 to 1000 ug/L (extended by dilution)	Industrial Effluent	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
	1 to 1000 ug/L (extended by dilution)	Sewage Effluent	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
	1 to 1000 ug/L (extended by dilution)	Surface Water	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
	3 to 1000 ug/L (extended by dilution)	Potable Water	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177

	Zinc	2 to 1000 ug/L (extended by dilution)	Groundwater	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
		2 to 1000 ug/L (extended by dilution)	Surface Water	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
		20 to 1000 ug/L (extended by dilution)	Sewage Effluent	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
		5 to 1000 ug/L (extended by dilution)	Potable Water	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
		9 to 1000 ug/L (extended by dilution)	Industrial Effluent	ICP-MS	Standard Method for the Examination of Water and Wastewater Method 3125B using SOP 177
Determination of Metals in Soil by ICP- OES	Arsenic	7.0 to 350 mg/Kg	Soil	ICP-OES	Standard Method for the examination of Water and Wastewater Method 3125B using SOP 224
	Barium	2.0 to 250 mg/Kg	Soil	ICP-OES	Standard Method for the examination of Water and Wastewater Method 3125B using SOP 224
	Beryllium	1 to 100 mg/Kg	Soil	ICP-OES	Standard Method for the examination of Water and Wastewater Method 3125B using SOP 224

Cadmium	1 to 250 mg/Kg	Soil	ICP-OES	Standard Method for the examination of Water and Wastewater Method 3125B using SOP 224
Chromium	3 to 350 mg/Kg	Soil	ICP-OES	Standard Method for the examination of Water and Wastewater Method 3125B using SOP 224
Cobalt	1 to 150 mg/Kg	Soil	ICP-OES	Standard Method for the examination of Water and Wastewater Method 3125B using SOP 224
Copper	4 to 250 mg/Kg	Soil	ICP-OES	Standard Method for the examination of Water and Wastewater Method 3125B using SOP 224
Lead	4 to 200 mg/Kg	Soil	ICP-OES	Standard Method for the examination of Water and Wastewater Method 3125B using SOP 224
Manganese	6 to 950 mg/Kg	Soil	ICP-OES	Standard Method for the examination of Water and Wastewater Method 3125B using SOP 224
Nickel	3 to 350 mg/Kg	Soil	ICP-OES	Standard Method for the examination of Water and Wastewater Method 3125B using SOP 224
Selenium	2 to 150 mg/Kg	Soil	ICP-OES	Standard Method for the examination of Water and Wastewater Method 3125B using SOP 224

		Silver	2 to 150 mg/Kg	Soil	ICP-OES	Standard Method for the examination of Water and Wastewater
		Strontium	1 to 150 mg/Kg	Soil	ICP-OES	Method 3125B using SOP 224 Standard Method for the examination of
						Water and Wastewater Method 3125B using SOP 224
		THallium	2 to 150 mg/Kg	Soil	ICP-OES	Standard Method for the examination of Water and Wastewater Method 3125B using SOP 224
		Vanadium	2 to 150 mg/Kg	Soil	ICP-OES	Standard Method for the examination of Water and Wastewater Method 3125B using SOP 224
		Zinc	6 to 550 mg/Kg	Soil	ICP-OES	Standard Method for the examination of Water and Wastewater Method 3125B using SOP 224
766 Environmental testing (inc waters)04 Organic	Determination of 4- Nonylphenol	4-Nonylphenol	0.009 to 0.375 ug/L	Ground Water	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Based on EPA 559 (Determination of Nonylphenol in Drinking Water) and ISO 18857:2001 (Determination of Bisphenol A) using Liquid Chromatography and Tandem Mass Spectrometry utilising online sample preparation with LC- MS\MS using SOP 606

			0.010 to 0.375 ug/L	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Based on EPA 559 (Determination of Nonylphenol in Drinking Water) and ISO 18857:2001 (Determination of Bisphenol A) using Liquid Chromatography and Tandem Mass Spectrometry utilising online sample preparation with LC- MS\MS using SOP 606
			0.04 to 0.375 ug/L	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Based on EPA 559 (Determination of Nonylphenol in Drinking Water) and ISO 18857:2001 (Determination of Bisphenol A) using Liquid Chromatography and Tandem Mass Spectrometry utilising online sample preparation with LC- MS\MS using SOP 606
	Determination of Bisphenol A	Bisphenol A	0.01 to 3 ug/L	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Based on EPA 559 (Determination of Nonylphenol in Drinking Water) and ISO 18857:2001 (Determination of Bisphenol A) using Liquid Chromatography and Tandem Mass Spectrometry utilising online sample preparation with LC-

					MS\MS using SOP 606
		0.01 to 3 ug/L	Potable Water	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Based on EPA 559 (Determination of Nonylphenol in Drinking Water) and ISO 18857:2001 (Determination of Bisphenol A) using Liquid Chromatography and Tandem Mass Spectrometry utilising online sample preparation with LC- MS\MS using SOP 606
		0.01 to 3 ug/L	Surface Water	LCMSMS - HPLC Mass Spec. with Mass spectrometric detection (MSD) in multiple reaction mode (MRM)	Based on EPA 559 (Determination of Nonylphenol in Drinking Water) and ISO 18857:2001 (Determination of Bisphenol A) using Liquid Chromatography and Tandem Mass Spectrometry utilising online sample preparation with LC- MS\MS using SOP 606
Determination of Organic Matter	Loss on ignition	0.47 to 100%	Soil	Muffle furnace, drying oven, balance	USEPA method 160.4/SI No 101 of 2009 using SOP 333
Determination of Polyaromatic Hydrocarbons	Benzo[a]anthracene	0.010 to 0.125 ug/L	Potable Water	GCMSMS with TSQ9000	Based on USEPA Method 610 (Polynuclear Aromatic Hydrocarbons) using SOP 575
	Indeno[1,2,3-cd] pyrene*	0.003 to 0.125 ug/L	Potable Water	GCMSMS with TSQ9000	Based on USEPA Method 610

				(Polynuclear Aromatic Hydrocarbons) using SOP 575
Acenaphthene	0.0025 to 0.125 ug/L	Potable Water	GCMSMS with TSQ9000	Based on USEPA Method 610 (Polynuclear Aromatic Hydrocarbons) using SOP 575
Acenaphthylene	0.002 to 0.125 ug/L	Potable Water	GCMSMS with TSQ9000	Based on USEPA Method 610 (Polynuclear Aromatic Hydrocarbons) using SOP 575
Benzo[a]pyrene	0.003 to 0.030 ug/L	Potable Water	GCMSMS with TSQ9000	Based on USEPA Method 610 (Polynuclear Aromatic Hydrocarbons) using SOP 575
Benzo[b]fluoranthene*	0.004 to 0.125 ug/L	Potable Water	GCMSMS with TSQ9000	Based on USEPA Method 610 (Polynuclear Aromatic Hydrocarbons) using SOP 575
Benzo[ghi]perylene*	0.004 to 0.125 ug/L	Potable Water	GCMSMS with TSQ9000	Based on USEPA Method 610 (Polynuclear Aromatic Hydrocarbons) using SOP 575
Benzo[k]fluoranthene*	0.004 to 0.125 ug/L	Potable Water	GCMSMS with TSQ9000	Based on USEPA Method 610 (Polynuclear Aromatic Hydrocarbons) using SOP 575
Chrysene	0.0134 to 0.125 ug/L	Potable Water	GCMSMS with TSQ9000	Based on USEPA Method 610 (Polynuclear Aromatic Hydrocarbons) using SOP 575
Fluorene	0.005 to 0.125 ug/L	Potable Water	GCMSMS with TSQ9000	Based on USEPA Method 610

					(Polynuclear Aromatic Hydrocarbons) using SOP 575
	Pyrene	0.004 to 0.125 ug/L	Potable Water	GCMSMS with TSQ9000	Based on USEPA Method 610 (Polynuclear Aromatic Hydrocarbons) using SOP 575
	Total PAH (total of those marked *)	(as calculated) to 0.5 ug/L	Potable Water	GCMSMS with TSQ9000	Based on USEPA Method 610 (Polynuclear Aromatic Hydrocarbons) using SOP 575
Determination of Total Organic Carbon (TOC)	Organic Carbon	0 to 50,000 mg/L	Potable Waters, Surface Waters, Groundwaters, Trade Effluents, Sewage Effluents	Total Organic Carbon Analyser	Based on BS EN 13137:2001 using SOP 316
		0.3 to 50 mg/L (extended by dilution)	Groundwater	TOC-V analyser	British Standard EN 13137:2001 using SOP 316
		0.3 to 50 mg/L (extended by dilution)	Groundwater	Total Organic Carbon Analyser	Based on BS EN 13137:2001 using SOP 316
		0.4 to 50 mg/L (extended by dilution)	Industrial Effluent	TOC-V analyser	British Standard EN 13137:2001 using SOP 316
		0.5 to 50 mg/L (extended by dilution)	Industrial Effluent	Total Organic Carbon Analyser	Based on BS EN 13137:2001 using SOP 316
		0.6 to 50 mg/L (extended by dilution)	Surface Water	TOC-V analyser	British Standard EN 13137:2001 using SOP 316
		0.6 to 50 mg/L (extended by dilution)	Surface Water	Total Organic Carbon Analyser	Based on BS EN 13137:2001 using SOP 316
		0.7 to 50 mg/L (extended by dilution)	Potable Water	TOC-V analyser	British Standard EN 13137:2001 using SOP 316

		0.86 to 50 mg/L (extended by dilution)	Potable Water	Total Organic Carbon Analyser	Based on BS EN 13137:2001 using SOP 316
			Sewage Effluent	Total Organic Carbon Analyser	Based on BS EN 13137:2001 using SOP 316
		1.4 to 50 mg/L (extended by dilution)	Sewage Effluent	TOC-V analyser	British Standard EN 13137:2001 using SOP 316
Determination of TPH's	Aromatics (>C35-C40)	7 to 2000 mg/Kg	Soil	Solvent extraction using PAL RTC and analysis by GC-FID Chromatography	Based on USEPA Method 8015B using SOP 572
Determination of Volatile Organic Compounds	1,1,1,2- Tetrachloroethane	0.5 to 200 ug/L (extended by dilution)	Groundwater	Headspace GCMS	EPA Method 8260B using SOP 154
		0.6 to 200 ug/L (extended by dilution)	Potable Water	Headspace GCMS	EPA Method 8260B using SOP 154
		1 to 200 ug/L (extended by dilution)	Industrial Effluent	Headspace GCMS	EPA Method 8260B using SOP 154
		1 to 200 ug/L (extended by dilution)	Surface Water	Headspace GCMS	EPA Method 8260B using SOP 154
	1,1,1-Trichloroethane	1 to 200 ug/L (extended by dilution)	Groundwater	Headspace GCMS	EPA Method 8260B using SOP 154
		1 to 200 ug/L (extended by dilution)	Industrial Effluent	Headspace GCMS	EPA Method 8260B using SOP 154
		1 to 200 ug/L (extended by dilution)	Potable Water	Headspace GCMS	EPA Method 8260B using SOP 154
		1 to 200 ug/L (extended by dilution)	Surface Water	Headspace GCMS	EPA Method 8260B using SOP 154
	1,1,2-Trichloroethane	1 to 200 ug/L (extended by dilution)	Potable Water	Headspace GCMS	EPA Method 8260B using SOP 154
		2 to 200 ug/L (extended by dilution)	Groundwater	Headspace GCMS	EPA Method 8260B using SOP 154
		2 to 200 ug/L (extended by dilution)	Industrial Effluent	Headspace GCMS	EPA Method 8260B using SOP 154
		2 to 200 ug/L (extended by dilution)	Surface Water	Headspace GCMS	EPA Method 8260B using SOP 154

1,1-Dichloroethane	1 to 200 ug/L (extended by dilution)	Groundwater	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Industrial Effluent	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Potable Water	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Surface Water	Headspace GCMS	EPA Method 8260B using SOP 154
1,1-Dichloroethene	1 to 200 ug/L (extended by dilution)	Groundwater	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Industrial Effluent	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Potable Water	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Surface Water	Headspace GCMS	EPA Method 8260B using SOP 154
1,1-Dichloropropene	1 to 200 ug/L (extended by dilution)	Groundwater	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Industrial Effluent	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Potable Water	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Surface Water	Headspace GCMS	EPA Method 8260B using SOP 154
1,2,3-Trichlorobenzene	1 to 200 ug/L (extended by dilution)	Groundwater	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Industrial Effluent	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Potable Water	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Surface Water	Headspace GCMS	EPA Method 8260B using SOP 154
1,2,3-Trichloropropane	0.9 to 200 ug/L (extended by dilution)	Groundwater	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Surface Water	Headspace GCMS	EPA Method 8260B using SOP 154

	2 to 200 ug/L (extended by dilution)	Industrial Effluent	Headspace GCMS	EPA Method 8260B using SOP 154
	2 to 200 ug/L (extended by dilution)	Potable Water	Headspace GCMS	EPA Method 8260B using SOP 154
1,2,4-Trichlorobenzene	0.6 to 200 ug/L (extended by dilution)	Surface Water	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Groundwater	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Industrial Effluent	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Potable Water	Headspace GCMS	EPA Method 8260B using SOP 154
1,2,4- Trimethylbenzene	1 to 200 ug/L (extended by dilution)	Groundwater	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Industrial Effluent	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Potable Water	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Surface Water	Headspace GCMS	EPA Method 8260B using SOP 154
1,2-Dibromoethane	1 to 200 ug/L (extended by dilution)	Groundwater	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Potable Water	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Surface Water	Headspace GCMS	EPA Method 8260B using SOP 154
	2 to 200 ug/L (extended by dilution)	Industrial Effluent	Headspace GCMS	EPA Method 8260B using SOP 154
1,2-Dichlorobenzene	1 to 200 ug/L (extended by dilution)	Groundwater	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Industrial Effluent	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Potable Water	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Surface Water	Headspace GCMS	EPA Method 8260B using SOP 154

1,2-Dichloroethane	0.9 to 200 ug/L (extended by dilution)	Potable Water	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Groundwater	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Industrial Effluent	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Surface Water	Headspace GCMS	EPA Method 8260B using SOP 154
1,2-Dichloropropane	1 to 200 ug/L (extended by dilution)	Groundwater	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Industrial Effluent	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Potable Water	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Surface Water	Headspace GCMS	EPA Method 8260B using SOP 154
1,3,5- Trimethylbenzene	1 to 200 ug/L (extended by dilution)	Groundwater	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Industrial Effluent	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Potable Water	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Surface Water	Headspace GCMS	EPA Method 8260B using SOP 154
1,3-Dichlorobenzene	1 to 200 ug/L (extended by dilution)	Groundwater	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Industrial Effluent	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Potable Water	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Surface Water	Headspace GCMS	EPA Method 8260B using SOP 154
1,3-Dichloropropane	1 to 200 ug/L (extended by dilution)	Groundwater	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Industrial Effluent	Headspace GCMS	EPA Method 8260B using SOP 154

	1 to 200 ug/L (extended by dilution)	Potable Water	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Surface Water	Headspace GCMS	EPA Method 8260B using SOP 154
1,4-Dichlorobenzene	1 to 200 ug/L (extended by dilution)	Potable Water	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Surface Water	Headspace GCMS	EPA Method 8260B using SOP 154
	2 to 200 ug/L (extended by dilution)	Groundwater	Headspace GCMS	EPA Method 8260B using SOP 154
	2 to 200 ug/L (extended by dilution)	Industrial Effluent	Headspace GCMS	EPA Method 8260B using SOP 154
2-Chlorotoluene	1 to 200 ug/L (extended by dilution)	Groundwater	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Industrial Effluent	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Potable Water	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Surface Water	Headspace GCMS	EPA Method 8260B using SOP 154
4-Chlorotoluene	1 to 200 ug/L (extended by dilution)	Groundwater	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Industrial Effluent	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Potable Water	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Surface Water	Headspace GCMS	EPA Method 8260B using SOP 154
Benzene	0.3 to 200 ug/L (extended by dilution)	Potable Water	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Groundwater	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Industrial Effluent	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Surface Water	Headspace GCMS	EPA Method 8260B using SOP 154

(extended by dilution)		Groundwater	Headspace GCMS	EPA Method 8260B using SOP 154
		Industrial Effluent	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Potable Water	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Surface Water	Headspace GCMS	EPA Method 8260B using SOP 154
Bromochloromethane	1 to 200 ug/L (extended by dilution)	Groundwater	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Industrial Effluent	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Surface Water	Headspace GCMS	EPA Method 8260B using SOP 154
	2 to 200 ug/L (extended by dilution)	Potable Water	Headspace GCMS	EPA Method 8260B using SOP 154
Bromodichloromethane	1 to 200 ug/L (extended by dilution)	Groundwater	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Industrial Effluent	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Surface Water	Headspace GCMS	EPA Method 8260B using SOP 154
	1.2 to 200 ug/L (extended by dilution)	Potable Water	Headspace GCMS	EPA Method 8260B using SOP 154
Bromoform	1 to 200 ug/L (extended by dilution)	Industrial Effluent	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Surface Water	Headspace GCMS	EPA Method 8260B using SOP 154
	2 to 200 ug/L (extended by dilution)	Groundwater	Headspace GCMS	EPA Method 8260B using SOP 154
	2.6 to 200 ug/L (extended by dilution)	Potable Water	Headspace GCMS	EPA Method 8260B using SOP 154
Carbon tetrachloride	1 to 200 ug/L (extended by dilution)	Groundwater	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Industrial Effluent	Headspace GCMS	EPA Method 8260B using SOP 154

	1 to 200 ug/L (extended by dilution)		Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Surface Water	Headspace GCMS	EPA Method 8260B using SOP 154
Chlorobenzene	1 to 200 ug/L (extended by dilution)	Groundwater	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Industrial Effluent	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Potable Water	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Surface Water	Headspace GCMS	EPA Method 8260B using SOP 154
Chloroform	1 to 200 ug/L (extended by dilution)	Groundwater	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Industrial Effluent	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Surface Water	Headspace GCMS	EPA Method 8260B using SOP 154
	5.5 to 200 ug/L (extended by dilution)	Potable Water	Headspace GCMS	EPA Method 8260B using SOP 154
cis-1,2-Dichloroethene	1 to 200 ug/L (extended by dilution)	Groundwater	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Industrial Effluent	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Potable Water	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Surface Water	Headspace GCMS	EPA Method 8260B using SOP 154
cis-1,3- Dichloropropene	1 to 200 ug/L (extended by dilution)	Groundwater	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Industrial Effluent	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Potable Water	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Surface Water	Headspace GCMS	EPA Method 8260B using SOP 154

Dibromochloromethane 1 to 200 ug/L (extended by dilution)		Groundwater	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Industrial Effluent	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Surface Water	Headspace GCMS	EPA Method 8260B using SOP 154
	1.4 to 200 ug/L (extended by dilution)	Potable Water	Headspace GCMS	EPA Method 8260B using SOP 154
Dibromomethane	1 to 200 ug/L (extended by dilution)	Groundwater	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Industrial Effluent	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Potable Water	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Surface Water	Headspace GCMS	EPA Method 8260B using SOP 154
Ethylbenzene	1 to 200 ug/L (extended by dilution)	Groundwater	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Industrial Effluent	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Potable Water	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Surface Water	Headspace GCMS	EPA Method 8260B using SOP 154
Hexachlorobutadiene	0.41 to 200 ug/L (extended by dilution)	Potable Water	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Groundwater	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Industrial Effluent	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Surface Water	Headspace GCMS	EPA Method 8260B using SOP 154
Isopropylbenzene	1 to 200 ug/L (extended by dilution)	Groundwater	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Industrial Effluent	Headspace GCMS	EPA Method 8260B using SOP 154

	1 to 200 ug/L (extended by dilution)	Potable Water	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)		Headspace GCMS	EPA Method 8260B using SOP 154
m & p-Xylene	1 to 200 ug/L (extended by dilution)	Groundwater	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Industrial Effluent	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Surface Water	Headspace GCMS	EPA Method 8260B using SOP 154
	2 to 200 ug/L (extended by dilution)	Potable Water	Headspace GCMS	EPA Method 8260B using SOP 154
Naphthalene	1 to 200 ug/L (extended by dilution)	Groundwater	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Industrial Effluent	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Potable Water	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Surface Water	Headspace GCMS	EPA Method 8260B using SOP 154
n-Butylbenzene	1 to 200 ug/L (extended by dilution)	Groundwater	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Industrial Effluent	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Potable Water	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Surface Water	Headspace GCMS	EPA Method 8260B using SOP 154
n-Propylbenzene	1 to 200 ug/L (extended by dilution)	Groundwater	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Industrial Effluent	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Potable Water	Headspace GCMS	EPA Method 8260B using SOP 154
	1.0 to 200 ug/L (extended by dilution)	Surface Water	Headspace GCMS	EPA Method 8260B using SOP 154

o-Xylene	1 to 200 ug/L (extended by dilution)	Groundwater	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Industrial Effluent	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Potable Water	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Surface Water	Headspace GCMS	EPA Method 8260B using SOP 154
p-Isopropyltoluene	1 to 200 ug/L (extended by dilution)	Groundwater	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Industrial Effluent	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Potable Water	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Surface Water	Headspace GCMS	EPA Method 8260B using SOP 154
sec-Butylbenzene	1 to 200 ug/L (extended by dilution)	Groundwater	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Industrial Effluent	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Potable Water	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Surface Water	Headspace GCMS	EPA Method 8260B using SOP 154
Styrene	1 to 200 ug/L (extended by dilution)	Groundwater	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Industrial Effluent	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Potable Water	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Surface Water	Headspace GCMS	EPA Method 8260B using SOP 154
tert-Butylbenzene	1 to 200 ug/L (extended by dilution)	Groundwater	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Industrial Effluent	Headspace GCMS	EPA Method 8260B using SOP 154

	1 to 200 ug/L (extended by dilution)	Potable Water	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Surface Water	Headspace GCMS	EPA Method 8260B using SOP 154
Tetrachloroethene	1 to 200 ug/L (extended by dilution)	Groundwater	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Industrial Effluent	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Surface Water	Headspace GCMS	EPA Method 8260B using SOP 154
	2.32 to 200 ug/L (extended by dilution)	Potable Water	Headspace GCMS	EPA Method 8260B using SOP 154
Tetrachloroethene & Trichloroethene (Potable)	2.32 to 200 ug/L (extended by dilution)	Potable Water	Headspace GCMS	EPA Method 8260B using SOP 154
Toluene	1 to 200 ug/L (extended by dilution)	Groundwater	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Industrial Effluent	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Potable Water	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Surface Water	Headspace GCMS	EPA Method 8260B using SOP 154
Total THM	1 to 800 ug/L (extended by dilution)	Groundwater	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 800 ug/L (extended by dilution)	Industrial Effluent	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 800 ug/L (extended by dilution)	Surface Water	Headspace GCMS	EPA Method 8260B using SOP 154
	1.2 to 800 ug/L (extended by dilution)	Potable Water	Headspace GCMS	EPA Method 8260B using SOP 154
trans-1,2- Dichloroethene	1 to 200 ug/L (extended by dilution)	Groundwater	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Industrial Effluent	Headspace GCMS	EPA Method 8260B using SOP 154
	1 to 200 ug/L (extended by dilution)	Potable Water	Headspace GCMS	EPA Method 8260B using SOP 154

			1 to 200 ug/L	Surface Water	Headspace GCMS	EPA Method 8260B
		trans-1,3- Dichloropropene	(extended by dilution) 1 to 200 ug/L (extended by dilution)	Surface Water	Headspace GCMS	using SOP 154 EPA Method 8260B using SOP 154
			2 to 200 ug/L (extended by dilution)	Groundwater	Headspace GCMS	EPA Method 8260B using SOP 154
			2 to 200 ug/L (extended by dilution)	Industrial Effluent	Headspace GCMS	EPA Method 8260B using SOP 154
			2 to 200 ug/L (extended by dilution)	Potable Water	Headspace GCMS	EPA Method 8260B using SOP 154
766 Environmental testing (inc waters)05 Inorganic	Determination of Alkalinity	Alkalinity	2 to 300 mg/L (extended by dilution)	Surface Water	Discrete Analyser	Aquakem / Labmedics procedure. ID number ALKBpB 003 using SOP 102
			4 to 300 mg/L (extended by dilution)	Groundwater	Discrete Analyser	Aquakem / Labmedics procedure. ID number ALKBpB 003 using SOP 102
			4 to 300 mg/L (extended by dilution)	Potable Water	Discrete Analyser	Aquakem / Labmedics procedure. ID number ALKBpB 003 using SOP 102
			6 to 300 mg/L (extended by dilution)	Industrial Effluent	Discrete Analyser	Aquakem / Labmedics procedure. ID number ALKBpB 003 using SOP 102
			6 to 300 mg/L (extended by dilution)	Sewage Effluent	Discrete Analyser	Aquakem / Labmedics procedure. ID number ALKBpB 003 using SOP 102
	Determination of Ammonia	Ammonia-N, Ammonia (by calculation), Ammonium (by calculation)	0.01 to 20 mg/L (extended by dilution)	Surface Water	Discrete Analyser	Standard Method for the Examination of Water and Wastewater F, Aquachem method AMMDIC and SSA Book Series: 5, Methods of Soil Analysis – Extraction of Exchangeable Ammonium and Nitrate

			and Nitrite 1996 using SOP 114
0.02 to 20 mg/L (extended by dilution)	Groundwater	Discrete Analyser	Standard Method for the Examination of Water and Wastewater F, Aquachem method AMMDIC and SSA Book Series: 5, Methods of Soil Analysis – Extraction of Exchangeable Ammonium and Nitrate and Nitrite 1996 using SOP 114
0.02 to 20 mg/L (extended by dilution)	Industrial Effluent	Discrete Analyser	Standard Method for the Examination of Water and Wastewater F, Aquachem method AMMDIC and SSA Book Series: 5, Methods of Soil Analysis – Extraction of Exchangeable Ammonium and Nitrate and Nitrite 1996 using SOP 114
0.04 to 20 mg/L (extended by dilution)	Potable Water	Discrete Analyser	Standard Method for the Examination of Water and Wastewater F, Aquachem method AMMDIC and SSA Book Series: 5, Methods of Soil Analysis – Extraction of Exchangeable Ammonium and Nitrate and Nitrite 1996 using SOP 114
0.05 to 20 mg/L (extended by dilution)	Sewage Effluent	Discrete Analyser	Standard Method for the Examination of Water and Wastewater F, Aquachem method

					AMMDIC and SSA Book Series: 5, Methods of Soil Analysis – Extraction of Exchangeable Ammonium and Nitrate and Nitrite 1996 using SOP 114
Determination of Available Lime in Soil	Available Lime	0 to 28.75 tonne/ha	Peat	Balance, pH meter, electrode	Based on the method of Shoemaker, McLean and Pratt (SMP), 1960 using SOP 304
		0 to 32.50 tonne/ha	Mineral Soils	Balance, pH meter, electrode	Based on the method of Shoemaker, McLean and Pratt (SMP), 1960 using SOP 304
Determination of Available Phosphorous in Soil	Available Phosphorous	0.1 to 20 mg/L	Soil	Discrete Analyser	Standard Soil Analysis using Morgans P and colorimetry and using SOP 301
Determination of Biochemical Oxygen Demand	Biochemical Oxygen	2 to 10000 mg/L	Groundwater	DO meter and electrode, water bath, incubator or by Automated Analyser	Standard Method for the Examination of Water and Wastewater Method 5210 B and USEPA method/EPA NE using SOP 113
		2 to 10000 mg/L	Industrial Effluent	DO meter and electrode, water bath, incubator or by Automated Analyser	Standard Method for the Examination of Water and Wastewater Method 5210 B and USEPA method/EPA NE using SOP 113
		2 to 10000 mg/L	Potable Water	DO meter and electrode, water bath, incubator or by Automated Analyser	Standard Method for the Examination of Water and Wastewater Method 5210 B and USEPA method/EPA NE using SOP 113

		2 to 10000 mg/L	Sewage Effluent	DO meter and electrode, water bath, incubator or by Automated Analyser	Standard Method for the Examination of Water and Wastewater Method 5210 B and USEPA method/EPA NE using SOP 113
		2 to 10000 mg/L	Surface Water	DO meter and electrode, water bath, incubator or by Automated Analyser	Standard Method for the Examination of Water and Wastewater Method 5210 B and USEPA method/EPA NE using SOP 113
Determination of Bromate	Bromate	0.5 to 100 ug/L	Groundwater	IC and Autosampler	EPA Method 300.1 using SOP 125
		0.5 to 100 ug/L	Surface Water	IC and Autosampler	EPA Method 300.1 using SOP 125
		2.4 to 100 ug/L	Potable Water	IC and Autosampler	EPA Method 300.1 using SOP 125
Determination of Chlorate to meet DIRECTIVE (EU) 2020/2184	Chlorate	0.007 to 0.500 mg/L	Surface Water	Ion Chromatography (IC)	Based on Metrohm Application work AW IC UK6-0477-082021 using SOP 593
		0.02 to 0.50 mg/L	Potable Water	Ion Chromatography (IC)	Based on Metrohm Application work AW IC UK6-0477-082021 using SOP 593
		0.061 to 0.500 mg/L	Groundwater	Ion Chromatography (IC)	Based on Metrohm Application work AW IC UK6-0477-082021 using SOP 593
Determination of Chloride	Chloride	0.7 to 300 mg/L (extended by dilution)	Surface Water	Discrete Analyser	Standard Method for the Examination of Water and Wastewater Method 4500-CI- E using SOP 100
		1 to 300 mg/L (extended by dilution)	Groundwater	Discrete Analyser	Standard Method for the Examination of Water and Wastewater Method 4500-CI- E using SOP 100

		1.8 to 300 mg/L (extended by dilution)	Potable Water	Discrete Analyser	Standard Method for the Examination of Water and Wastewater Method 4500-CI- E using SOP 100
		2 to 300 mg/L (extended by dilution)	Sewage Effluent	Discrete Analyser	Standard Method for the Examination of Water and Wastewater Method 4500-CI- E using SOP 100
		3 to 300 mg/L (extended by dilution)	Industrial Effluent	Discrete Analyser	Standard Method for the Examination of Water and Wastewater Method 4500-CI- E using SOP 100
Determination of Chlorite to meet DIRECTIVE (EU) 2020/2184	Chlorite	0.001 to 0.500 mg/L	Groundwater	Ion Chromatography (IC)	Based on Metrohm Application work AW IC UK6-0477-082021 using SOP 593
		0.001 to 0.500 mg/L	Surface Water	Ion Chromatography (IC)	Based on Metrohm Application work AW IC UK6-0477-082021 using SOP 593
		0.026 to 0.500 mg/L	Potable Water	Ion Chromatography (IC)	Based on Metrohm Application work AW IC UK6-0477-082021 using SOP 593
Determination of Colour	Colour (Apparent)	10 to 200 PtCo (Hazen Units)	Sewage Effluent	Discrete Analyser	Standard Method for the Examination of Water and Wastewater Method 2120 B using SOP 108
		11 to 200 PtCo (Hazen Units)	Potable Water	Discrete Analyser	Standard Method for the Examination of Water and Wastewater Method 2120 B using SOP 108
		4 to 200 PtCo (Hazen Units)	Industrial Effluent	Discrete Analyser	Standard Method for the Examination of Water and Wastewater

					Method 2120 B using SOP 108
		5 to 200 PtCo (Hazen Units)	Surface Water	·	Standard Method for the Examination of Water and Wastewater Method 2120 B using SOP 108
		6 to 200 PtCo (Hazen Units)	Groundwater	,	Standard Method for the Examination of Water and Wastewater Method 2120 B using SOP 108
	Colour (True)	1.6 to 200 PtCo (Hazen Units)	Surface Water	·	Standard Method for the Examination of Water and Wastewater Method 2120 B using SOP 108
		8 to 200 PtCo (Hazen Units)	Potable Water	·	Standard Method for the Examination of Water and Wastewater Method 2120 B using SOP 108
			Potable Waters, Surface Waters	,	Standard Method for the Examination of Water and Wastewater Method 2120 B using SOP 108
Determination of Fluoride	Fluoride	0.03 to 1 mg/L (extended by dilution)	Surface Water	•	Standard Method for the Examination of Water and Wastewater 1998 Method 4500 F E and SSA Book Series: 5 – Methods of Soil Analysis, Calcium Chloride Extractable Fluorine 1996 using SOP 115
		0.05 to 1 mg/L (extended by dilution)	Groundwater	,	Standard Method for the Examination of Water and Wastewater 1998 Method 4500 F

				E and SSA Book Series: 5 – Methods of Soil Analysis, Calcium Chloride Extractable Fluorine 1996 using SOP 115
	0.05 to 1 mg/L (extended by dilution)	Industrial Effluent	Discrete Analyser	Standard Method for the Examination of Water and Wastewater 1998 Method 4500 F E and SSA Book Series: 5 – Methods of Soil Analysis, Calcium Chloride Extractable Fluorine 1996 using SOP 115
	0.08 to 1 mg/L (extended by dilution)	Potable Water	Discrete Analyser	Standard Method for the Examination of Water and Wastewater 1998 Method 4500 F E and SSA Book Series: 5 – Methods of Soil Analysis, Calcium Chloride Extractable Fluorine 1996 using SOP 115
Determination Hardness Ca	3 to 20 mg/L (extended by dilution)	Industrial Effluent	Discrete Analyser	Aquakem / Labmedics procedure: ID number HAR001 using SOP 111
	3 to 20 mg/L (extended by dilution)	Sewage Effluent	Discrete Analyser	Aquakem / Labmedics procedure: ID number HAR001 using SOP 111
	3.1 to 20 mg/L (extended by dilution)	Groundwater	Discrete Analyser	Aquakem / Labmedics procedure: ID number HAR001 using SOP 111
	4 to 20 mg/L (extended by dilution)	Surface Water	Discrete Analyser	Aquakem / Labmedics procedure: ID number

					HAR001 using SOP 111
		6 to 20 mg/L (extended by dilution)	Potable Water	Discrete Analyser	Aquakem / Labmedics procedure: ID number HAR001 using SOP 111
	Total Phosphate as P, Phosphate (by calculation), Phosphorous Pentoxide (by calculation)	0.03 to 4 mg/L (extended by dilution)	Groundwater	Discrete Analyser	Standard Method for the Examination of Water and Wastewate Method 4500-P E using SOP 166
		0.03 to 4 mg/L (extended by dilution)	Surface Water	Discrete Analyser	Standard Method for the Examination of Water and Wastewate Method 4500-P E using SOP 166
		0.1 to 4 mg/L (extended by dilution)	Sewage Effluent	Discrete Analyser	Standard Method for the Examination of Water and Wastewate Method 4500-P E using SOP 166
		0.23 to 4 mg/L (extended by dilution)	Industrial Effluent	Discrete Analyser	Standard Method for the Examination of Water and Wastewate Method 4500-P E using SOP 166
Determination of Nitrate	Nitrate (as N by calculation), Nitrate (by calculation)	0.09 to 8 mg/L (extended by dilution)	Potable Water	Discrete Analyser	Standard Method for the Examination of Water and Wastewate Method 4500-NO3 H using SOP 103
		0.51 to 8 mg/L (extended by dilution)	Surface Water	Discrete Analyser	Standard Method for the Examination of Water and Wastewate Method 4500-NO3 H using SOP 103
		0.67 to 8 mg/L (extended by dilution)	Sewage Effluent	Discrete Analyser	Standard Method for the Examination of Water and Wastewate

					Method 4500-NO3 H using SOP 103
		1 to 8 mg/L (extended by dilution)	Groundwater	Discrete Analyser	Standard Method for the Examination of Water and Wastewater Method 4500-NO3 H using SOP 103
		1 to 8 mg/L (extended by dilution)	Industrial Effluent	Discrete Analyser	Standard Method for the Examination of Water and Wastewater Method 4500-NO3 H using SOP 103
Determination of Nitrite	Nitrite (as N), Nitrite (by calculation)	0.006 to 0.8 mg/L (extended by dilution)	Surface Water	Discrete Analyser	Standard Method for the Examination of Water and Wastewater Method 4500-NO2- B using SOP 118
		0.01 to 0.8 mg/L (extended by dilution)	Groundwater	Discrete Analyser	Standard Method for the Examination of Water and Wastewater Method 4500-NO2- B using SOP 118
		0.026 to 0.8 mg/L (extended by dilution)	Industrial Effluent	Discrete Analyser	Standard Method for the Examination of Water and Wastewater Method 4500-NO2- B using SOP 118
		0.03 to 0.8 mg/L (extended by dilution)	Potable Water	Discrete Analyser	Standard Method for the Examination of Water and Wastewater Method 4500-NO2- B using SOP 118
		0.05 to 0.8 mg/L (extended by dilution)	Sewage Effluent	Discrete Analyser	Standard Method for the Examination of Water and Wastewater Method 4500-NO2- B using SOP 118
Determination of Nitrogen	Total Oxidised Nitrogen (TON) as N	0.24 to 8 mg/L (extended by dilution)	Surface Water	Discrete Analyser	Standard Method for the Examination of Water and Wastewater

				Method 4500-NO3 H and SSA Book Series: 5, Methods of Soil Analysis – Extraction of Exchangeable Ammonium and Nitrate and Nitrite 1996 using SOP 151
	0.27 to 8 mg/L (extended by dilution)	Potable Water	Discrete Analyser	Standard Method for the Examination of Water and Wastewater Method 4500-NO3 H and SSA Book Series: 5, Methods of Soil Analysis – Extraction of Exchangeable Ammonium and Nitrate and Nitrite 1996 using SOP 151
	0.29 to 8 mg/L (extended by dilution)	Groundwater	Discrete Analyser	Standard Method for the Examination of Water and Wastewater Method 4500-NO3 H and SSA Book Series: 5, Methods of Soil Analysis – Extraction of Exchangeable Ammonium and Nitrate and Nitrite 1996 using SOP 151
	0.39 to 8 mg/L (extended by dilution)	Industrial Effluent	Discrete Analyser	Standard Method for the Examination of Water and Wastewater Method 4500-NO3 H and SSA Book Series: 5, Methods of Soil Analysis – Extraction of Exchangeable Ammonium and Nitrate and Nitrite 1996 using SOP 151

		0.67 to 8 mg/L (extended by dilution)	Sewage Effluent	Discrete Analyser	Standard Method for the Examination of Water and Wastewater Method 4500-NO3 H and SSA Book Series: 5, Methods of Soil Analysis – Extraction of Exchangeable Ammonium and Nitrate and Nitrite 1996 using SOP 151
Determination of Orthophosphate	Orthophosphate as P	0.01 to 4 mg/L (extended by dilution)	Groundwater	Discrete Analyser	Standard Method for the Examination of Water and Wastewater Method 4500-P E using SOP 117
		0.01 to 4 mg/L (extended by dilution)	Industrial Effluent	Discrete Analyser	Standard Method for the Examination of Water and Wastewate Method 4500-P E using SOP 117
		0.01 to 4 mg/L (extended by dilution)	Potable Water	Discrete Analyser	Standard Method for the Examination of Water and Wastewate Method 4500-P E using SOP 117
		0.01 to 4 mg/L (extended by dilution)	Surface Water	Discrete Analyser	Standard Method for the Examination of Water and Wastewate Method 4500-P E using SOP 117
		0.03 to 4 mg/L (extended by dilution)	Sewage Effluent	Discrete Analyser	Standard Method for the Examination of Water and Wastewate Method 4500-P E using SOP 117
Determination of Oxygen	COD	3 to 1500 mg/L (extended by dilution)	Groundwater	COD Reactor, spectrophotometer	Standard Method for the Examination of Water and Wastewate Method 5220 D using SOP 107

		5 to 1500 mg/L (extended by dilution)	Industrial Effluent	COD Reactor, spectrophotometer	Standard Method for the Examination of Water and Wastewater Method 5220 D using SOP 107
		5 to 1500 mg/L (extended by dilution)	Surface Water	COD Reactor, spectrophotometer	Standard Method for the Examination of Water and Wastewater Method 5220 D using SOP 107
Determination of Phosphate	Total Phosphate as P, Phosphate (by calculation), Phosphorous Pentoxide (by calculation)	0.05 to 4 mg/L (extended by dilution)	Potable Water	Discrete Analyser	Standard Method for the Examination of Water and Wastewater Method 4500-P E using SOP 166
Determination of Silica	Silica	0.2 to 20 mg/L (extended by dilution)	Sewage Effluent	Discrete Analyser	Standard Method for the Examination of Water and Wastewater Method 4500-SiO2 C using SOP 152
		0.26 to 20 mg/L (extended by dilution)	Surface Water	Discrete Analyser	Standard Method for the Examination of Water and Wastewater Method 4500-SiO2 C using SOP 152
		0.3 to 20 mg/L (extended by dilution)	Groundwater	Discrete Analyser	Standard Method for the Examination of Water and Wastewater Method 4500-SiO2 C using SOP 152
		0.3 to 20 mg/L (extended by dilution)	Industrial Effluent	Discrete Analyser	Standard Method for the Examination of Water and Wastewater Method 4500-SiO2 C using SOP 152
		1.1 to 20 mg/L (extended by dilution)	Potable Water	Discrete Analyser	Standard Method for the Examination of Water and Wastewater Method 4500-SiO2 C using SOP 152

Determination of Sulphate	Sulphate (SO4)	1 to 300 mg/L (extended by dilution)	Groundwater	Discrete Analyser	Standard Method for the Examination of Water and Wastewater Method 4500-SO42- E and SSA Book Series: 5 – Methods of Soil Analysis, Extraction of Sulphur 1996 using SOP 119
		1 to 300 mg/L (extended by dilution)	Industrial Effluent	Discrete Analyser	Standard Method for the Examination of Water and Wastewater Method 4500-SO42- E and SSA Book Series: 5 – Methods of Soil Analysis, Extraction of Sulphur 1996 using SOP 119
		1 to 300 mg/L (extended by dilution)	Surface Water	Discrete Analyser	Standard Method for the Examination of Water and Wastewater Method 4500-SO42- E and SSA Book Series: 5 – Methods of Soil Analysis, Extraction of Sulphur 1996 using SOP 119
		4 to 300 mg/L (extended by dilution)	Sewage Effluent	Discrete Analyser	Standard Method for the Examination of Water and Wastewater Method 4500-SO42- E and SSA Book Series: 5 – Methods of Soil Analysis, Extraction of Sulphur 1996 using SOP 119
		5 to 300 mg/L (extended by dilution)	Potable Water	Discrete Analyser	Standard Method for the Examination of Water and Wastewater Method 4500-SO42- E and SSA Book Series: 5 – Methods of Soil

					Analysis, Extraction of Sulphur 1996 using SOP 119
Determination of Total Kjeldahl Nitrogen	Nitrogen	1 to 100 mg/L TKN	Industrial Effluent	Digestor, scrubber, distillation unit	Standard Method for the Examination of Water and Wastewater Method 4500-Norg using SOP 104
Determination of Total Nitrogen		0 to 30 mg/L Total Nitrogen as N	Potable Waters, Surface Waters, Groundwaters, Trade Effluents, Sewage Effluents	Total Nitrogen Analyser	Based on ASTM D8083 - 16 using SOP 547
		0.1 to 30 mg/L as N as N (extended by dilution)	Surface Water	Total Nitrogen Analyser	Based on ASTM D8083 - 16 using SOP 547
		0.2 to 30 mg/L as N as N (extended by dilution)	Groundwater	Total Nitrogen Analyser	Based on ASTM D8083 - 16 using SOP 547
		0.3 to 30 mg/L as N (extended by dilution)	Potable Water	Total Nitrogen Analyser	Based on ASTM D8083 - 16 using SOP 547
		0.33 to 30 mg/L as N (extended by dilution)	Industrial Effluent	Total Nitrogen Analyser	Based on ASTM D8083 - 16 using SOP 547
		1 to 30 mg/L as N as N (extended by dilution)	Sewage Effluent	Total Nitrogen Analyser	Based on ASTM D8083 - 16 using SOP 547
Determination of Turbidity	Turbidity	0.1 to 1000 NTU	Groundwater	Turbidimeter	Standard Method for the Examination of Water and Wastewater 2130 A/B and WTW Turb 355IR/T Instruction manual using SOP 109
		0.1 to 1000 NTU	Industrial Effluent	Turbidimeter	Standard Method for the Examination of Water and Wastewater 2130 A/B and WTW Turb 355IR/T

					Instruction manual using SOP 109
		0.1 to 1000 NTU	Potable Water	Turbidimeter	Standard Method for the Examination of Water and Wastewater 2130 A/B and WTW Turb 355IR/T Instruction manual using SOP 109
		0.1 to 1000 NTU	Sewage Effluent	Turbidimeter	Standard Method for the Examination of Water and Wastewater 2130 A/B and WTW Turb 355IR/T Instruction manual using SOP 109
		0.1 to 1000 NTU	Surface Water	Turbidimeter	Standard Method for the Examination of Water and Wastewater 2130 A/B and WTW Turb 355IR/T Instruction manual using SOP 109
767 Physical test/measurement01 pH		4 to 10 pH units	Groundwater	pH meter, electrode or by Automated Analyser	Standard Method for the Examination of Water and Wastewater Method 4500 - H+ B using SOP 110
		4 to 10 pH units	Industrial Effluent	pH meter, electrode or by Automated Analyser	Standard Method for the Examination of Water and Wastewater Method 4500 - H+ B using SOP 110
		4 to 10 pH units	Potable Water	pH meter, electrode or by Automated Analyser	Standard Method for the Examination of Water and Wastewater Method 4500 - H+ B using SOP 110
		4 to 10 pH units	Sewage Effluent	pH meter, electrode or by Automated Analyser	Standard Method for the Examination of Water and Wastewater

						Method 4500 - H+ B using SOP 110
			4 to 10 pH units	Surface Water	pH meter, electrode or by Automated Analyser	Standard Method for the Examination of Water and Wastewater Method 4500 - H+ B using SOP 110
	Determination of pH in Soil		4 to 13 pH units	Soil	pH meter, electrode	Department of Agriculture and Food guidelines Nov, 2004 using SOP 300
767 Physical test/measurement02 Conductivity	Determination of Conductivity	Conductivity	2 to 20000 us/cm-1	Groundwater	Conductivity meter, electrode or by Automated Analyser	Standard Method for the Examination of Water and Wastewater Method 2510 B using SOP 112
			2.2 to 20000 us/cm-1	Surface Water	Conductivity meter, electrode or by Automated Analyser	Standard Method for the Examination of Water and Wastewater Method 2510 B using SOP 112
			33 to 20000 us/cm-1	Industrial Effluent	Conductivity meter, electrode or by Automated Analyser	Standard Method for the Examination of Water and Wastewater Method 2510 B using SOP 112
			36 to 20000 us/cm-1	Sewage Effluent	Conductivity meter, electrode or by Automated Analyser	Standard Method for the Examination of Water and Wastewater Method 2510 B using SOP 112
			7.4 to 20000 us/cm-1	Potable Water	Conductivity meter, electrode or by Automated Analyser	Standard Method for the Examination of Water and Wastewater Method 2510 B using SOP 112
767 Physical test/measurement03 Suspended Solids	Determination of Suspended Solids	Suspended Solids	2 to 1000 mg/L	Industrial Effluent	Drying oven, balance	Standard Method for the Examination of Water and Wastewater Method 2540 D and

		EPA method 160.2 for
		Gravimetric analysis
		using SOP 106

Head Office

Chemical Testing

Category: B

Chemistry Field - Tests	Test name	Analyte	Range of measurement	Matrix	Equipment/technique	Standard reference/SOP
798 Sampling	Drinking Water Sampling	Sampling		Treatment Plant and Distribution Network		BS ISO 5667-5:2006 using EM 403