Schedule of Accreditation Organisation Name Marine Institute Trading As INAB Reg No 130T Contact Name Ciara Nulty Address Marine Environment & Food Safety Services Division, Rinville, Oranmore, Galway Contact Phone No 091 387566 Email ciara.nulty@marine.ie Website http://www.marine.ie Accreditation Standard EN ISO/IEC 17025 T Standard Version 2017 Date of award of accreditation 01/07/2002 Scope Classification Biological and veterinary testing Scope Classification Chemical testing Services available to the public¹ No ¹ Refer to document on interpreting INAB Scopes of Accreditation | | Sites from which accredited services are delivered | |------------------|---| | (the detail of | the accredited services delivered at each site are on the Scope of Accreditation) | | 1 | | | Name | Address | | Marine Institute | Rinville, Oranmore, Galway | # Scope of Accreditation #### **Marine Institute Headquarters** #### **Biological and Veterinary Testing** Category: A | Biology/veterinary field - Tests | Test name | Technique | Matrix | Equipment | Std. reference | |--|---|---|------------------------------|--|---| | 802 Preparation of films on slides followed by microscopic examination with or without fixation and staining with dyes as required02 Microscopic examination for parasites | FHU-106 Monitoring for Gyrodactylus salaris | Microscopic identification of proteinase-K digested gyrodactylid parasites, removed from finfish fins. Range: present/absent | Fish | Binocular Stereo
dissection
microscope
Light microscope | Laboratory SOP FHU-106. Based on OIE Manual of Diagnostic Tests for Aquatic Animals Chapter 2.3.3, in accordance with Commission Implementing decision (EU) 2021/60 | | 802 Preparation of films on slides followed by microscopic examination with or without fixation and staining with dyes as required05 Microscopic examination for constituents of animal origin | FHU-095 Screening of
histology from Ostrea edulis
for the presence/absence of
Marteilia refringens | Preparation of stained histological slides and screening of slides for the presence or absence of the protistan parasite Marteilia refringens the causative agent of Marteiliosis (Aber disease) in the flat oyster Ostrea edulis | Molluscs (Oysters) | Binocular
microscope, tissue
processor, slide
stainer | Laboratory SOP FHU-95
and FHU-86. Based on
methods laid down in EURL
diagnostic manuals and
procedures. and in the OIE
Manual of Diagnostic Tests
for Aquatic Animals in
accordance with
Commission delegated
Regulation (EU) 2020/689 | | 803 Culture of organisms in liquid or agar based culture media with visual or instrument monitoring for | Enumeration in Molluscan | Most probable number test for enumeration of Escherichia coli in Molluscan Bivalve Shellfish | Fish, Shellfish and molluscs | Cultures
Incubator
Most probable
number technique | Laboratory SOP MIC-06.
Based on ISO 16649-3
Microbiology of food and
foodstuffs – Horizontal
method for the enumeration | | growth01 Culture of bacteria | | | | for enumeration of
Escherichia coli | of β glucuronidase-positive
Esherichia coli – Part 3.
Most probable number
techniques using 5-bromo-
4-
chloro-3-inddolyl- β-
Dglucuronide. | |--|---|--|------------------------------------|--|---| | 805 Detection and/or identification of bacterial, parasite, fungal and viral nucleic acids using appropriate techniques03 Nucleic acid amplification tests, CE marked commercial systems | MBU-004 Detection of
norovirus genogroups I and II
bivalve shellfish | Detection of norovirus genogroups I and II bivalve shellfish by real-time reverse transcription polymerase chain reaction (RT- PCR Instrument). Range: 100 to 2 X 10^7 genome copies/g of shellfish hepatopancreas tissue | Fish, shellfish and molluscs | Real-Time PCR
Instrument | Laboratory SOP MBU-4.
Based on ISO 15216-
1:2017 | | | MBU-110 Detection of hepatitis A virus bivalve shellfish | Detection of hepatitis A virus in bivalve shellfish by real-time reverse transcription polymerase chain reaction (RT- PCR). Range: Detected/ Not detected. | Fish, shellfish and molluscs | Real-Time PCR
Instrument | laboratory SOP MBU-110.
Based on ISO 15216-
2:2019. | | 805 Detection and/or identification of bacterial, parasite, fungal and viral nucleic acids using appropriate techniques04 Nucleic acid amplification tests, in house developed assays | Detection of specified DNA-
based pathogens using real-
time Probe-based PCR
(rtPCR) | Koi Herpesvirus (KHV Renibacterium salmoninarum (BKD) Gyrodactylus salaris Ostreid herpes virus 1 (OsHV-1) Whitespot syndrome virus (WSSV) Mareilia refringens Detection by real-time Probebased PCR (rtPCR). Range: positive/negative | FinFish,
Shellfish,
Molluscs | Real-time PCR intrument | Laboratory SOP MBU-125
based on EURL finfish,
Molluscan and Crustacea
diagnostic manuals; WOAH
(OIE) Diagnostic manuals.
Regulation (EU) 2016/429,
Commission Delegated
Regulation (EU) 2020/689,
Commission Implementing
Decision (EU) 2021/260 | | | MBU-067 Detection of
Infectious Salmon Anaemia
in Salmonid Fish Tissue | Detection of Infectious Salmon
Anaemia virus in Salmonid
Tissue by real-time PCR. Range:
positive/negative | Fish | Real-Time PCR
Instrument | Laboratory SOP MBU-67. Based on method outlined in Snow et al., 2006. Developments in Biologicals (Basel) 126, 133-145 and EURL diagnostic manuals and procedures in accordance with commission delegated Regulation (EU) 2020/689 | | 810 Culture of virus and other obligate intracellular pathogens using in vivo or in vitro techniques | FHU-065 Virological examintaion of samples for the presence of Viral Haemorrhagic Septicaemia (VHS), Infectious Haematopoietic Necrosis (IHN), Infectious Pancreatic Necrosis (IPN) and Spring Viraemia of Carp (SVC) in Finfish. | Screening Finish for VHSV, IHNV, IPNV and SVCV by cell culture. Range: positive/negative | Fish | Tissue
Homogeniser
Microscope,
ELISA Plate
Reader | Laboratory SOP FHU-65. Based on Commission delegated Regulation (EU) 2020/689 and EURL diagnostics manuals and procedures and the OIE Manual of Diagnostic Tests for Aquatic Animals Chapter 2.3.9. | |--|---|---|--|---|--| | 820 Miscellaneous | FHU-086 and FHU-087 Preparation and Screening of heart imprints from Ostrea edulis for the presence of Bonamia ostreae | Histological and microscopic preparation and examination of slides | Molluscs (Oysters) | Binocular
microscope,
downdraft,
fumehood | Laboratory SOP FHU-87
and FHU-86. Based on
methods laid down in EURL
diagnostic manuals and
procedures and in the OIE
Manual of Diagnostic Tests
for Aquatic Animals in
accordance with
Commission delegated
regulation (EU) 2020/689 | | | PHY-009 Phytoplankton Test Identification and enumeration of Phytoplankton | Phytoplankton Test Identification and enumeration of Phytoplankton by the Utermöhl Cell Counting Method Range: 40 cells/l upwards (see appendix 1 for details list) | Biota: Species list: Toxic species – PSP Toxin Producers (Saxitoxins) (Also linked to fish mortalities) Alexandrium tamarense Alexandrium minutum Alexandrium ostenfeldii Alexandrium cysts Toxic species – DSP Toxin Producers (Okadaic acid, DTX's, Pectenotoxins) Dinophysis acuminata Dinophysis caudata | Utermöhl Cell counting method using Inverted light microscope | Laboratory SOP PHY-9. Based on EN15204:2007 and EU Directive 853/2004. | |
 | | |-----------------------|--| | Dinophysis dens | | | Dinophysis fortii | | | Dinophysis hastata | | | Dinophysis miles | | | Dinophysis mitra | | | | | | Dinophysis | | | mucronata | | | Dinophysis nasutum | | | Dinophysis norvegica | | | Dinophysis ovum | | | Dinophysis parva | | | Dinophysis pulchella | | | Dinophysis rotundata | | | Dinophysis sacculus | | | Dinophysis tripos | | | Dinophysis sp. | | | Prorocentrum lima | | | Prorocentrum | | | minimum/balticum | | | Phalacroma rapa | | | Phalacroma spp. | | | Toxic species ASP | | | Toxin Producers | | | (Domoic Acid) | | | Pseudo-nitzschia | | | delicatissima group < | | | 3 μm | | | Pseudo-nitzschia | | | | | | seriata group >3 μm | | | Toxic species. – | | | Yessotoxins, Homo- | | | yessotoxin producers | | | Lingulodinium | | | polyedrum | | | Protoceratium | | | reticulatum | | | Gonyaulax spinifera | | | Dinophysis sacculus | | | Dinophysis tripos | | | Dinophysis sp. | | | Prorocentrum lima | | | Prorocentrum | | | minimum/balticum | | | Phalacroma rapa | | | i nadoroma rapa | | | | | Phalacroma spp. | | | |--|--|-----------------|--|--| | | | | | | | | | | | | | | | | | | ### **Marine Institute Headquarters** ### **Chemical Testing** Category: A | Chemistry Field - Tests | Test name | Analyte | Range of measurement | Matrix | Equipment/technique | Standard reference/SOP | |---|--|---|--|---|--|--| | 751 Food testing03
Compositional analysis | CHE-052
Determination of
Moisture content in
Marine Biota | Moisture | Range: Moisture
Content: 2.0%-90% | Fish, Shellfish and
molluscs (marine
biota) | Moisture content by oven determination | Laboratory SOP CHE-
52. Based on the
AOAC official method
for moisture in Meat,
official methods of
analysis of AOAC
International. | | 752 Chemical residue testing01 Drugs and drug metabolites | CHE-008 Screening
and Confirmatory
Chemical Test of
Ivermectin and
Emamectin B1a and
Doramectin | Ivermectin and
Emamectin B1a and
Doramectin | Range: Ivermectin:
0.2-300 ngg-1
Emamectin B1a: 29-
1000 ngg-1
Doramectin: 0.2-300
ngg-1 | Fin Fish - skin and
muscle in natural
proportions | UPLC | Laboratory SOP CHE-8. Based on Laboratory developed methods for th analysis of Ivermectin and Emamectin B1a and Doramectin by UPLC | | | CHE-220 CHE-220
Analysis of Antibiotics
by LCMSMS (semi
and full quantitative
confirmatory) | Quinolones Ciprofloxacin Danofloxacin Difloxacin Enrofloxacin Flumequine Marbofloxacin Nalidixic acid Norfloxacin Oxolinic acid Sarafloxacin Sulphonamides Sulfachloropyridazine Sulfadiazine Sulfadoxine | 5-400 μg/kg
10-800 μg/kg
30-2400 μg/kg
5-400 μg/kg
60-4800 μg/kg
10-800 μg/kg
10-800 μg/kg
10-800 μg/kg
10-800 μg/kg
3-240 μg/kg
10-800 μg/kg
5-400 μg/kg
5-400 μg/kg
5-400 μg/kg
5-400 μg/kg
5-400 μg/kg | fin-fish matrices,
skin and muscle in
natural
proportions, and
prawn matrices | LCMSMS (Liquid
Chromatography Mass
Spectrometry) | Laboratory SOP CHE-220. The development and validation of a multiclass LC_MS/MS procedure for the determination of veterinary drug residues in animal tissue using a QUECHERS approach. Analytica Chimica Acta 637 (2009),68-78 | | Г | | O Research ! | 5 400 · // | | | | |---|---------------------|-------------------------|--------------------------|--------------------|---------------------|-------------------------| | | | | 5-400 µg/kg | | | | | | | | 0.5-40 μg/kg | | | | | | | Sulfamethoxypyridazine | | | | | | | | Sulfamonomethoxine | | | | | | | | Sulfapyridine | | | | | | | | Sulfaquinoxaline | | | | | | | | Sulfathiazole | | | | | | | | Sulfisoxazole | | | | | | | | Sulfacetamide | | | | | | | | Sulfameter | | | | | | | | Sulfamoxole | | | | | | | | Sulfisomidine | | | | | | | | Sulfatroxazole | | | | | | | | Sulfachloropyrazine | | | | | | | | Sulfaethoxypyrazine | | | | | | | | Sulfasalazine | | | | | | | | Sulfabenzamide | | | | | | | | Sulfaphenazole | | | | | | | | Tetracyclines | | | | | | | | Chlortetracycline | | | | | | | | Demeclocycline | | | | | | | | Doxycycline | | | | | | | | 4-epi-Chlortetracycline | | | | | | | | 4-epi-Oxytetracycline | | | | | | | | 4-epi-Tetracycline | | | | | | | | Oxytetracycline | | | | | | | | Tetracycline Other | | | | | | | | Trimethoprim | | | | | | | | Dapsone | | | | | | j | CHE-233 Analysis of | Malachite green, | Confirmatory | Finfish muscle and | LCMSMS (Liquid | Laboratory SOP CHE- | | | Dyes by Thermo | | method: Qualitative & | | Chromatography Mass | | | | LCMSMS | Blue, Leuco Crystal | Quantitative Analysis | | Spectrometry) | Based on the Journal of | | | LOMOMO | Violet, Leuco Malachite | Quantitativo 7 tilalyolo | proportions | Specifically) | Chromatography/A/2011 | | | | Green, Brilliant Green | Quantitative Range: | | | Vol 1218, NUMB 12, | | | | Green, Brilliant Green | 0.2- 8 µg/kg | | | pages 1632-1645 with | | | | | 0.2 σ μg/ng | | | adaptions | | | | | Qualitative Range: | | | | | | | | determination at | | | | | | | | lowest calibration | | | | | | | | level 0.20 µg/kg | | | | | | | | 10 νοι 0.20 μg/κg | | | | | | | | | | | | | 752 Chemical residue testing02 Elements | CHE-032 Screening
and Confirmatory
Chemical test
Mercury | Mercury | Range: 0.007-50
mg.kg-1 wet weight | Fish, Shellfish and
molluscs (marine
biota) | Cold Vapour-Atomic
Fluorescence
Spectrometry | Laboratory SOP CHE-
32 Digestion Method.
Based on Hatch and
Ott, 1968. Analytical
method for
determination of total
mercury based on
manufacturers
recommendations (PS
Analytical). | |---|--|---|--|---|--|---| | | CHE-178 Screening
and Confirmatory
Analysis of trace
metals in marine biota | As, Cd, Cu, Pb, Zn | Range: As 0.002 -
200 mg/kg ww
Cd 0.002 – 200
mg/kg ww
Cu 0.01 - 200 mg/kg
ww
Pb 0.02 - 200 mg/kg
ww
Zn 0.14 – 500 mg/kg
ww | Fish, Shellfish and
molluscs (marine
biota) | Inductively coupled plasma - Mass Spectrometry | Laboratory SOP CHE-
178 Digestion method
based on in-house
developed method and
ICPMS manufacturer
recommendations | | 752 Chemical residue
testing04 Pesticide
residues | | Quantitative Screening
Analysis of
Cypermethrin and
Deltamethrin | Cypermethrin 25-400
ug/kg. Deltamethrin
5-80 ug/kg | Finfish- muscle
and skin in natural
proportions | Gas Chromatography
Mass Spectrometry | Laboratory SOP CHE215 Based on Roscoe, Veronica, Judge, Judy, Rawn, Dorothea F.K., "Application of the QuEChERS Extraction Method for the Analysis of Pyrethrin and Pyrethroid Pesticides in Fin and non-Fin Fish | | 752 Chemical residue testing05 Organic contaminants | CHE-170 Determination of Lipid Content and analysis of Organic Contaminants | Quantitative Analysis of
Polychlorinated
Biphenyls,
Hexachlorobenzene
and
Hexachlorobutadiene. | Range: 0.001 -
10,000ng.g ww
and/or lipid weight | marine and freshwater fish, shellfish and marine mammals. | Gas Chromatgraphy
Mass Spectrometry | Laboratory SOP CHE-
170. Based on an
internationally
recognised method for
the extraction of lipids
from biota followed by
the analysis of
contaminants by GC-
MS. | | | | Quantitative Analysis of
Polycyclic Aromatic
Hydrocarbons and
Polybrominated
Diphenyl Ethers | Range: 0.001 -
70.00ng.g ww and/or
lipid weight | biota) | | Laboratory SOP CHE- 170. Based on an internationally recognised method for the extraction of lipids from biota followed by the analysis of contaminants by GC-MS [ICES No 53 Techniques in Marine Environmental Sciences] | |---|--|--|---|---------------------------------------|---|---| | 752 Chemical residue testing07 Nutrients | CHE-209 Nutrients in
Sea and Estuarine
Water | Quantitative Analysis of total oxidized nitrogen (TOxN), nitrite, silicate and phosphate | Range: Nitrite 0.04-
20µM, Phosphate
0.16-50µM, Total
Oxidised Nitrogen
0.26-2000µM and
Silicate 0.38-1500µM | marine and
estuarine water | Continuous Flow
Analyser (computer
controlled, continuous
flow, wet chemistry
analytical system using
colorimetry) | Laboratory SOP CHE-
209. Based on
manufacturers
recommendations
(Skalar auto-analyser
Methods). | | 766 Environmental testing (inc waters)01 Metal analysis | CHE-168 Determination of Total Mercury in Estuarine and Marine Waters | Total mercury | Range: 0-20 ppt | Estuarine and marine waters | | Laboratory SOP CHE- 168. Based on USEPA Method 1631: Determination of mercury in water by cold vapour atomic fluorescence spectrometry with gold trap | | | CHE-169 Screening
and Confirmatory
Analysis of metals in
estuarine and marine
waters | Ag, As, Cd, Cr, Cu, Ni,
Pb, Zn | Range: 0.05-1000
μg/l | Saline, Estuarine
and other Waters | | Laboratory SOP CHE-
169. Based on USEPA
Method 200.8
Determination of Trace
Elements in Waters and
Wastes by Inductively
Coupled Plasma – Mass
Spectrometry Revision
5.4. | | 766 Environmental testing (inc waters)05 Inorganic | CHE-141 Salinity
analysis in Sea and
Estuarine Water | Salinity | Range: 0.03 (i.e.
LOQ) - 41.81 psu | Saline Waters | Portasal Salinometer
TM8410A | Laboratory SOP CHE-
141. Based in Technical
Manual for Portasal
Salinometer. | | 797 Miscellaneous
materials and products -
.03 Other tests | BCT-078 Analysis of
Lipophilic toxins,
including semi
quantitative screen for
Domoic Acid | Okadaic acid, AZA,
Yessotoxin, Domoic
Acid | | Fish, shellfish and molluscs | UPLC MSMS | Laboratory SOP BCT-78. Based on Gerssen,P.P.J. Mulder, M.A. McElhinney, J. de Boer, 2009. Journal of Chromatograohy A, 1216, 9, 1421 - 1430 and the EU Reference method for lipophilic toxin analysis (EU-RL LCMSMS) | |--|---|--|--|--|---------------------|--| | | BCT-088 Chemical
Confirmatory Test:
Domoic and Epi-
Domoic Acid analysis | Domoic acid and Epi-
Domoic Acid | Range Domoic and
Epi-Domoic acid: 0.8
– 2500 mg.kg-1 | Fish, shellfish and
molluscs.
Shellfish: All
Tissue | | Laboratory SOP BCT-
88. Based on the
international procedure
by Quilliam et al.1995
used and recommended
by the European
Reference Laboratory
for Marine
Biotoxins(EURLMB). | | | BCT-096 Analysis of
Biotoxins in Shellfish | Okadaic Acid, AZA,
Yessotoxin, Domic Acid | • | Fish, shellfish and
molluscs.
Shellfish: All
Tissue | | Laboratory SOP BCT-
96. Based on the EU
Reference method for
lipophilic toxin analysis
(EU-RL LC/MS-MS) | | | BCT-100 Paralytic
Shellfish Toxins by
pre-column oxidation
UHPLC-FD | Saxitoxin STX, GTX
Neo | Range: Toxin Range
(LOQ-ULQ)
Units: µg STX
diHCLeq-kg
STX 34 → 2263
dcSTX 17 → 1459
GTX2,3 26 → 3359 | Fish, shellfish and molluscs | Chromatography with | Lawrence JF,
Niedzwiadek B, Menard
C "AOAC Official
Method 2005.06 | | | GTX5 2 → 155 | | | | ĺ | |--|-------------------------|--|--|---|---| | | dcGTX2,3 14 → | | | | | | | 1405 | | | | ı | | | $C1,24 \rightarrow 509$ | | | | | | | NEO 145 → 4481 | | | | ı | | | GTX1,4 245 → 3984 | | | | Ì | | | dcNEO 25 → 1513 | | | | ĺ | | | | dcGTX2,3 14 → 1405 C1,2 4 → 509 NEO 145 → 4481 GTX1,4 245 → 3984 | dcGTX2,3 14 → 1405 C1,2 4 → 509 NEO 145 → 4481 GTX1,4 245 → 3984 | dcGTX2,3 14 \rightarrow 1405
C1,2 4 \rightarrow 509
NEO 145 \rightarrow 4481
GTX1,4 245 \rightarrow 3984 | dcGTX2,3 14 \rightarrow 1405
C1,2 4 \rightarrow 509
NEO 145 \rightarrow 4481
GTX1,4 245 \rightarrow 3984 | ### **Marine Institute Headquarters** ### **Chemical Testing** Category: B | Chemistry Field - Tests | Test name | Analyte | Range of measurement | Matrix | Equipment/technique | Standard reference/SOP | |-------------------------|---|---------|----------------------|---|---------------------|---| | | for taking samples for
surveillance
monitoring of finfish | | | Fin Fish - skin and
muscle in natural
proportions | | Laboratory SOP CHE-
6 , based on
Regulations
(EU)2022/1644,
(EU)2022/1646, (EU)
2021/808 Annex 1 |