Schedule of Accreditation Organisation Name Public Analyst's Laboratory Galway Trading As INAB Reg No 9T Contact Name Helena McGrath Address University College Hospital, Seamus Quirke Road, Galway Contact Phone No 091-581122 Email helena.mcgrath@hse.ie Website Accreditation Standard EN ISO/IEC 17025 T Standard Version 2017 Date of award of accreditation 12/12/1989 Scope Classification Chemical testing Services available to the public¹ ¹ Refer to document on interpreting INAB Scopes of Accreditation | Sites from which accredited services are delivered | | | | | | | |--|---------|--|--|--|--|--| | (the detail of the accredited services delivered at each site are on the Scope of Accreditation) | Name | Address | | | | | | ## Scope of Accreditation ## **Public Analyst's Laboratory, Galway** **Chemical Testing** Category: A | Chemistry Field - Tests | Test name | Analyte | Range of measurement | Matrix | Equipment/technique | Standard reference/SOP | |--|---|--------------|---|--|--|---| | 751 Food testing02
Nutritional analysis | Additives in Food by
HPLC Analysis ^{1 2 3}
**4 | Folic Acid | 2-160µg/100ml (Milk & Non-alcoholic beverages) 10-1000µg/100g (Dairy Spreads & Fat & Oll Spreads) 6-1000µg/100g (Cereal & bakery products, babyfood, body building foods) 400µg-512mg /100g (Food Supplements) 40 to 10,000µg/g (Vitamins and Food Supplements) | Spreads, Cereals & bakery products, Non-alcholic | Liquid
Chromatography
(HPLC /uHPLC) with
Mass Spectroscopy
(LC-MS) | Laboratory Method
1/42 | | | | | 40 to 10,000µg/g | Vitamins and Food
Supplements | High Performance
Liquid
Chromatography with
UV Detection | Laboratory method
1/43, Based on USP
Monograph for Oil and
Water Soluble
Vitamins with Minerals
Capsules | | 751 Food testing03
Compositional analysis | | Benzoic Acid | 10-500mg/L
(Liquids)
75-3000mg/kg
(Solids) | Food and Drink | High Performance
Liquid
Chromatography | Laboratory Method
1/55 | | | Folic Acid | 2-160µg/100ml (Milk & Non-alcoholic beverages) 10-1000µg/100g (Dairy Spreads & Fat & Oll Spreads) 6-1000µg/100g (Cereal & bakery products, babyfood, body building foods) 400µg-512mg /100g (Food Supplements) 40 to 10,000 µg/g (Vitamins and Food Supplements) | Milk Dairy Spreads, Spreads Cereals & bakery products Non-alcholic Beverages Babyfoods, Body Building Foods, Food Supplements | Liquid
Chromatography -
Mass Spectroscopy
(LC-MS) | Laboratory Method
1/42 | |--------------------------|------------------|--|---|---|---| | | | 40 to 10,000μg/g | Vitamins and Food
Supplements | High Performance
Liquid
Chromatography with
UV Detection | Laboratory method
1/43, Based on USP
Monograph for Oil and
Water Soluble
Vitamins with Minerals
Capsules | | | Sorbic Acid | 10-500mg/L
(Liquids)
75-3000mg/kg
(Solids) | Food and Drink | High Performance
Liquid
Chromatography | Laboratory Method
1/55 | | Moisture **4 | Moisture | 0.5-100%m/m | Food and Drink | Gravimetric | Labroatory Method
1/18 | | pH **4 | рН | 2-12 pH Units | Dairy Products Fruit & Vegetables Non-alcoholic beverages Wine Alcoholic beverages Confectionery | Electrometry | Laboratory Method
1/19 | | Potassium³ **1,2,4 | Potassium | 0.01 - 10.0% | Food and Drink | Flame Photometry | Laboratory Method
1/40 | | Refractive Index **1,3,4 | Refractive Index | 1.32 -1.56 | Fats & Oils
Soups, Broths &
Sauces
Non-alcoholic
beverages
Preserves | Refractometry | Laboratory Method
1/17 | | Sodium **1,2,3,4 | Sodium | 0.01-39.0% | Food and Drink | Flame Photometry | Laboratory Method
1/40 | | | Soluble Solids as
Sucrose **3,4 | Soluble Solids as
Sucrose | 0 -85% w/w | Fats & Oils
Soups, Broths &
Sauces
Non-alcoholic
beverages
Preserves | Refractometry | Laboratory Method
1/17 | |------------------------------------|--|---|--|---|--|--| | | Sugars in Food **1,2,4 | Sucrose
Glucose
Fructose
Maltose
Galactose
Lactose | Sucrose 0.005g/100g to 70g/100g Glucose 0.005g/100g to 60g/100g Galactose 0.005g/100g to 40g/100g Fructose 0.005g/100g to 40g/100g Lactose 0.005g/100g to 40g/100g Maltose 0.005g/100g to 40g/100g (or ml/100ml) | | Ion-chromatography (IC) | In-House Laboratory
Method | | | Sulphur Dioxide /
Sulphites **1,3,4 | Sulphur Dioxide | 10-4500 mg/kg or /L | Food and Drink | Tanner Method -
Distillation | Laboratory Method
1/50 , Tanner Method,
Distillation | | | Titratable Acidity **4 | Titratable Acidity | 1.4 -3.0mml of 0.1N
NaOH/10ml | Milk | Titration | Laboratory Method
1/7 based on
BS1741:1989 Section
10.1 and
ISO6091:1980 | | 751 Food testing04
Adulteration | Contaminants in Food
by HPLC Analysis ^{1 2 3}
**4 | Cadaverine | 10-3700mg/kg | Cheese
Fish, Crustaceans &
molluscs,
Fish Products/
Sauces | High Performance
Liquid
Chromatography | Laboratory Method
1/36, based on
JAOAC Vol. 78, No.4,
1995 | | | | Histamine | 10-3700mg/kg | Cheese
Fish, Crustaceans &
molluscs,
Fish Products/
Sauces | High Performance
Liquid
Chromatography | Laboratory Method
1/36, based on
JAOAC Vol. 78, No.4,
1995 | | | Putrescine | 10-3700mg/kg | Cheese
Fish, Crustaceans &
molluscs,
Fish Products/
Sauces | High Performance
Liquid
Chromatography | Laboratory Method
1/36, based on
JAOAC Vol. 78, No.4,
1995 | |--|---|--|--|---|---| | | Tyramine | 10-3700mg/kg | Cheese
Fish, Crustaceans &
molluscs,
Fish Products/
Sauces | High Performance
Liquid
Chromatography | Laboratory Method
1/36, based on
JAOAC Vol. 78, No.4,
1995 | | Detection of Irradiated Foods **4 | Irradiation | Screening
Positive,
Intermediate,
Negative | Foods | Photo-Stimulated
Luminescence (PSL) | Based on IS EN
13751:2009 | | Extraneous Water | Extraneous Water | 0.5 to 16% | Milk | Calculation from
Freezing Point
Depression. | Laboratory Method
1/6A based on IS EN
ISO5764:2009 | | Foreign Objects **4 | Foreign Objects | | Foreign objects,
Food and Drink, | Physical, Chemical and Microscopical examination | Laboratory Method
1/80 | | Freezing Point
Depression **4 | Freezing Point
Depression | -422 to -621m° H | Milk | Cryoscope | Laboratory Method
1/6A based on IS EN
ISO5764:2009 | | Sugars in Food **1,2,4 | Sucrose
Glucose
Fructose
Maltose
Galactose
Lactose | Sucrose
0.005g/100g to
70g/100g
Glucose
0.005g/100g to
60g/100g
Galactose
0.005g/100g to
40g/100g
Fructose
0.005g/100g to
40g/100g
Lactose 0.005g/100g
to 40g/100g
Maltose 0.005g/100g
to 40g/100g
(or ml/100ml) | | Ion-chromatography (IC) | In-House Laboratory
Method | | Sulphur Dioxide /
Sulphites **1,3,4 | Sulphur Dioxide | 10-45000 mg/kg or
/L | Food and Drink | Tanner Method -
Distillation | Laboratory Method
1/50 , Tanner Method,
Distillation | | 751 Food testing06
Allergens | Casein | Casein | 0.5 to 112,500 mg/kg | Food and Drink | Enzyme Linked
Immunosorbent Assay
(ELISA), Casein Kit | Laboratory Method
1/39 | | |---|--|-----------------|-------------------------|--|--|--|---------------------------| | | Egg | Egg | 0.25 to 10,000 mg/kg | Food and Drink | Enzyme Linked
Immunosorbent Assay
(ELISA), Egg Kit | Laboratory Method
1/38 | | | | Gluten ^{1 2 3} **4 | Gluten | 10-25000mg/kg | Foods and Drink
(excluding
fermented-
hydrolyzed foods) | Enzyme Linked
Immunosorbent Assay
(ELISA), Gliadin Kit | Laboratory Method
1/31A | | | | Peanut ^{1 2 3} **4 | Peanut | 0.75 to 25,000 mg/kg | Food and Drink | Enzyme Linked
Immunosorbent Assay
(ELISA), Peanut Kit | Laboratory Method
1/41 | | | | Sulphur Dioxide /
Sulphites **1,3,4 | Sulphur Dioxide | 10-45000 mg/kg or
/L | Food and Drink | Tanner Method -
Distillation | Laboratory Method
1/50 , Tanner Method,
Distillation | | | 752 Chemical residue testing02 Elements | Elements in Food ^{1 2 3} **4 | Arsenic | 0.2-100mg/kg | Food and Drink | Inductively Coupled
Plasma- Mass
Spectrometry (ICP-
MS) with Microwave
Digestion | Laboratory Method
1/24 | | | | | Cadmium | 0.2-100mg/kg | Food and Drink | Inductively Coupled
Plasma- Mass
Spectrometry (ICP-
MS) with Microwave
Digestion | Laboratory Method
1/24 | | | | | | Chromium | 0.25-100mg/kg | Food and Drink | Inductively Coupled
Plasma- Mass
Spectrometry (ICP-
MS) with Microwave
Digestion | Laboratory Method
1/24 | | | | Cobalt | 0.01-1.00 mg/kg | Food and Drink | Inductively Coupled
Plasma- Mass
Spectrometry (ICP-
MS) with Microwave
Digestion | Laboratory Method
1/24A | | | | | Iron | 6-12,500 mg/kg | Food and Drink | Inductively Coupled
Plasma- Mass
Spectrometry (ICP-
MS) with Microwave
Digestion | Laboratory Method
1/24A | | | | | Lead | 0.2-100mg/kg | Food and Drink | Inductively Coupled Plasma- Mass | Laboratory Method
1/24 | | | | | | | Spectrometry (ICP-
MS) with Microwave
Digestion | | |---------------------------------------|--------------------|--|----------------|--|---| | | Magnesium | 8-70,000 mg/kg | Food and Drink | Inductively Coupled
Plasma- Mass
Spectrometry (ICP-
MS) with Microwave
Digestion | Laboratory Method
1/24A | | | Manganese | 0.2-1500 mg/kg | Food and Drink | Inductively Coupled Plasma- Mass Spectrometry (ICP-MS) with Microwave Digestion | Laboratory Method
1/24A | | | Molybdenum | 0.2-70 mg/kg | Food and Drink | Inductively Coupled Plasma- Mass Spectrometry (ICP-MS) with Microwave Digestion | Laboratory Method
1/24A | | | Nickel | 0.5-100mg/kg | Food and Drink | Inductively Coupled
Plasma- Mass
Spectrometry (ICP-
MS) with Microwave
Digestion | Laboratory Method
1/24 | | | Selenium | 0.2-100mg/kg | Food and Drink | Inductively Coupled
Plasma- Mass
Spectrometry (ICP-
MS) with Microwave
Digestion | Laboratory Method
1/24 | | | Zinc | 2-10,000 mg/kg | Food and Drink | Inductively Coupled
Plasma- Mass
Spectrometry (ICP-
MS) with Microwave
Digestion | Laboratory Method
1/24A | | Elements in Food ^{1 2 3} **4 | Calcium
Mercury | 100 to 111,000 Ca
mg/kg
0.04 to 1mg Hg /kg | Food and Drink | Inductively Coupled
Plasma- Mass
Spectrometry (ICP-
MS) with Microwave
Digestion | Laboratory Method
1/24-Ca
Laboratory Method
1/24- Hg | | Metals in Cosmetics
**1,2,3,4 | Arsenic | 0.5-500mg/kg | Cosmetics | Inductively Coupled
Plasma- Mass
Spectrometry (ICP-
MS) with Microwave
Digestion | Laboratory Method
4/1 | | | | Chromium | 0.5-500mg/kg | Cosmetics | Inductively Coupled | Laboratory Method | |--|---|--|--------------------------|---------------------------|---|---| | | | | | | Plasma- Mass
Spectrometry (ICP-
MS) with Microwave
Digestion | 4/1 | | | | Lead | 0.6-500mg/kg | Cosmetics | Inductively Coupled Plasma- Mass Spectrometry (ICP-MS) with Microwave Digestion | Laboratory Method
4/1 | | | | Nickel | 1.2-1000mg/kg | Cosmetics | Inductively Coupled Plasma- Mass Spectrometry (ICP-MS) with Microwave Digestion | Laboratory Method
4/1 | | | Metals in Cosmetics
**1,2,3,4 | Cadmium | 0.5-500mg/kg | Cosmetics | Inductively Coupled Plasma- Mass Spectrometry (ICP-MS) with Microwave Digestion | Laboratory Method
4/1 | | 756 Drugs and pharmaceuticals01 Identification of pharmaceutical samples | Identification by
Absorption
Spectrophotometry ³
**4 | Identification by
Absorption
Spectrophotometry | | Pharmaceutical
Samples | UV/VIS Spectrometry | Laboratory Method
3/6, Based on
Customer Supplied
Methods or European,
British or United
States
Pharmacopoeia | | | Identification by High
Performance Liquid
Chromatography ³ **4 | Identification by High
Performance Liquid
Chromatography | | Pharmaceutical
Samples | High Performance
Liquid
Chromatography | Laboratory Method
3/5, Based on
Customer Supplied
Methods or European,
British or United
States
Pharmacopoeia | | 756 Drugs and pharmaceuticals02 Quantification of pharmaceutical samples | Assay by Absorption
Spectrophotometry ^{1 3}
**4 | Assay by Absorption Spectrophotometry | % of Labelled
Content | Pharmaceutical
Samples | UV/VIS Spectrometry | Laboratory Method
3/6, Based on
Customer Supplied
Methods or European,
British or United
States
Pharmacopoeia | | | Assay by High
Performance Liquid | Assay by High
Performance Liquid
Chromatography | % of Labelled
Content | Pharmaceutical
Samples | High Performance
Liquid
Chromatography | Laboratory Method
3/5, Based on
Customer Supplied | | Chromatography ^{1 3} **4 | | | | | Methods or European,
British or United
States
Pharmacopoeia | |---|--|--------------------------|---|--|---| | Disintegration **4 | Disintegration | | Pharmaceutical
Samples (Tablets
/Capsules/Granules) | Disintegration
Apparatus | Laboratory Method
3/4, Based on
European, British or
United States
Pharmacopoeia | | Dissolution ^{1 3} **4 | Dissolution | % of Labelled
Content | Pharmaceutical
Samples-Solid Oral
Dosage Units | Dissolution Apparatus
with High Performance
Liquid
Chromatography or
UV/Vis Spectrometry | Laboratory Method
3/9, Based on
Customer Supplied
Methods or European,
British or United
States
Pharmacopoeia | | pH **4 | рН | 1-13 pH Units | Pharmaceutical Samples | Electrometry | Laboratory Method
3/8 | | Subdivision of Tablets **4 | Uniformity of Mass-
Subdivision of Tablets | 10mg-100g | Pharmaceutical
Samples | Gravimetric | Laboratory Method
3/2, Based on
European or British
Pharmacopoeia | | Uniformity of content
of single dose
preparations ^{1 3} **4 | Assay by Absorption
Spectrophotometry or
High Performance
Liquid Chromatography | % of Labelled
Content | Pharmaceutical
Samples | UV/VIS Spectrometry
or High Performance
Liquid
Chromatography | Laboratory Method
3/7, Based on
Customer Supplied
Methods or European
or British
Pharmacopoeia | | Uniformity of Dosage
Units ^{1 3} **4 | | % of Labelled
Content | Pharmaceutical
Samples | UV/VIS Spectrometry
or High Performance
Liquid
Chromatography | Laboratory Method
3/7, Based on
Customer Supplied
Methods or European,
British or United
States
Pharmacopoeia | | Uniformity of Mass of
Delivered Doses from
Multi-Dose Containers
**4 | · | 10mg-100g | Pharmaceutical
Samples | Gravimetric | Laboratory Method
3/2 , Based on
European or British
Pharmacopoeia | | Uniformity of Mass of
Single Dose
Preparations **4 | | 10mg-100g | Pharmaceutical
Samples | Gravimetric | Laboratory Method
3/2 , Based on
European or British
Pharmacopoeia | | 766 Environmental testing (inc waters)04 Organic | | Total THMs
(Chloroform,
Bromodichloromethane,
Dibromochloromethane,
Bromoform) | 6 to 900 μg/L | Waters for Potable
and Domestic
PurposesBore
Waters, Other
Waters - Bottled
Waters | Addition | Laboratory Method
2/81, Based on S.M.
of Examination of
Waters and Waste
Waters 6200B | |--|--|--|-------------------|---|--|---| | | | Total Trichloroethene and Tetrachloroethene | 4 to 150μg/L | Waters for Potable
and Domestic
PurposesBore
Waters, Other
Waters - Bottled
Waters | Addition | Laboratory Method
2/81, Based on S.M.
of Examination of
Waters and Waste
Waters 6200B | | | Volatile Organic
Compounds ¹ **2,4 | 1,2 Dichloroethane | 0.3-45 μg/L | Waters for Potable
and Domestic
PurposesBore
Waters, Other
Waters - Bottled
Waters | Gas Chromatography -
Mass Spectroscopy
(GC-MS) | Laboratory Method
2/81, Based on S.M.
of Examination of
Waters and Waste
Waters 6200B | | | Volatile Organic
Compounds ¹ **4 | Benzene | 0.25 - 31.25 μg/L | Waters for Potable
and Domestic
PurposesBore
Waters, Other
Waters, Bottled
Waters | Gas Chromatography -
Mass Spectroscopy
(GC-MS) | Laboratory Method
2/81, Based on S.M.
of Examination of
Waters and Waste
Waters 6200B | | | | Bromodichloromethane | 1-150 μg/L | Waters for Potable
and Domestic
PurposesBore
Waters, Other
Waters - Bottled
Waters | Gas Chromatography -
Mass Spectroscopy
(GC-MS) | Laboratory Method
2/81, Based on S.M.
of Examination of
Waters and Waste
Waters 6200B | | | | Bromoform | 1-150 μg/L | Waters for Potable
and Domestic
PurposesBore
Waters, Other
Waters - Bottled
Waters | Gas Chromatography -
Mass Spectroscopy
(GC-MS) | Laboratory Method
2/81, Based on S.M.
of Examination of
Waters and Waste
Waters 6200B | | | | Chloroform | 3-450 μg/L | Waters for Potable
and Domestic
PurposesBore
Waters, Other
Waters - Bottled
Waters | Gas Chromatography -
Mass Spectroscopy
(GC-MS) | Laboratory Method
2/81, Based on S.M.
of Examination of
Waters and Waste
Waters 6200B | | | | Dibromochloromethane | 1-150 μg/L | Waters for Potable
and Domestic
PurposesBore
Waters, Other
Waters - Bottled
Waters | Gas Chromatography -
Mass Spectroscopy
(GC-MS) | Laboratory Method
2/81, Based on S.M.
of Examination of
Waters and Waste
Waters 6200B | |--|--|----------------------|----------------|--|--|---| | | Volatile Organic
Compounds ¹ **4 | Tetrachloroethene | 2-75 μg/L | Waters for Potable
and Domestic
PurposesBore
Waters, Other
Waters - Bottled
Waters | Gas Chromatography -
Mass Spectroscopy
(GC-MS) | Laboratory Method
2/81, Based on S.M.
of Examination of
Waters and Waste
Waters 6200B | | | | Trichloroethene | 2-75 μg/L | Waters for Potable
and Domestic
PurposesBore
Waters, Other
Waters - Bottled
Waters | Gas Chromatography -
Mass Spectroscopy
(GC-MS) | Laboratory Method
2/81, Based on S.M.
of Examination of
Waters and Waste
Waters 6200B | | 766 Environmental testing (inc waters)05 Inorganic | | Ammonium | 0.03 - 1.6mg/L | Water for potable
and domestic
purposes
Drinking Waters
Bottled Waters | Aquakem- Automated
Salicylate Method | Laboratory Method
2/37 | | | Chloride ¹ **4 | Chloride | 20-1000mg/L | Waters for Potable
and Domestic
Purposes, Drinking
Waters
Bore Waters,
Other Waters -
Bottled Waters | Aquakem Discrete analyser | Laboratory Method
2/30 Based on
Standard Methods
for Examination of
Waters and Waste
Waters Method
4500Cl | | | Colour ¹ **4 | Colour | 2.0 -500mg/L | Water for potable
and domestic
purposes
Drinking Waters
Bottled Waters
Bathing Waters
(Saline waters and
waters other than
saline) | Spectroscopy
@400nm | Laboratory Method
2/6 | | | Conductivity 1 **4 | Conductivity | 10-6000 μS/cm | Water for potable
and domestic
purposes
Drinking Waters
Bottled Waters | Electrometry | Laboratory Method
2/8, Based on S.M. for
Examination of
Waters and Waste
Waters 2510A | | Flouride 1**2,4 | Fluoride | 100-5000μg/L | Water for potable
and domestic
purposes
Drinking Waters
Bottled Waters | Ion Chromatography | Laboratory Method
2/25, Based on S.M.
for Examination of
Waters and Waste
Waters 4100B | |---|-------------------------|---------------------|--|---|---| | Free and Total
Chlorine ¹ **4 | Free and Total Chlorine | 0.02 - 50mg/L | Water for potable
and domestic
purposes
Drinking Waters
Bottled Waters
Other Waters -
Swimming Pool &
Jacuzzi | Colourimetry | Laboratory Method
2/10, Based on S.M.
for Examination of
Waters and Waste
Waters 4500-CL | | Nitrate**1 | Nitrate | 2.0 to 80mg/L | Water for potable
and domestic
purposes
Drinking Waters
Bottled Waters | Calculation | Laboratory Method
2/37, Based on S.M.
of Examination of
Waters and Waste
Waters 4500 NO3 H | | Nitrite 1 **4 | Nitrite | 0.02-1.0mg/L | Water for potable
and domestic
purposes
Drinking Waters
Bottled Waters | Aquakem- Automated
Salicylate Method | Laboratory Method
2/37, Based on S.M.
of Examination of
Waters and Waste
Waters 4500-NO2 B | | pH **4 | рΗ | 3.0 - 10.0 pH Units | Water for potable
and domestic
purposes
Drinking Waters
Bottled Waters
Bathing Waters
(Saline waters and
waters other than
saline) | Electrometry | Laboratory Method
2/9, Based on S.M. for
Examination of
Waters and Waste
Waters 4500-HB | | Sulphate 1 **4 | Sulphate | 20-1000mg/L | Waters for Potable
and Domestic
Purposes, Drinking
Waters
Bore Waters,
Other Waters -
Bottled Waters | Aquakem Discrete
analyser | Laboratory Method
2/30 Based on
Standard Methods
for Examination of
Waters and Waste
Waters Method 4500
SO4 | | Total Alkalinity 1 **4 | Total Alkalinity | 20-1000mg/L | Waters for Potable
and Domestic
Purposes, Drinking
Waters
Bore Waters, | Aquakem Discrete analyser | Laboratory Method
2/30 Based on
Standard Methods
for Examination of | | | | | Other Waters -
Bottled Waters | | Waters and Waste
Waters Method 2320B | |---|-------------------------|---------------|--|---|---| | Total Hardness ¹ **2,4 | Total Hardness | 20-1000mg/L | Waters for Potable
and Domestic
Purposes, Drinking
Waters
Bore Waters,
Other Waters -
Bottled Waters | Aquakem Discrete analyser | Laboratory Method
2/30 Based on
Standard Methods
for Examination of
Waters and Waste
Waters Method 2340C | | Total Oxidised
Nitrogen ¹ **4 | Total Oxidised Nitrogen | 2.0-80.0mg/L | Water for potable
and domestic
purposes
Drinking Waters
Bottled Waters | Aquakem- Automated
Salicylate Method | Laboratory Method
2/37, Based on S.M.
of Examination of
Waters and Waste
Waters 4500 NO3 H | | Trace Metals 1**2,4 | Cadmium | 0.1 - 5.0μg/L | Waters for Potable
and Domestic
Purposes
Bore Waters,
Other Waters -
Dialysis Waters,
Bottled Waters | Inductively Couple
Plasma- Mass
Spectrometry (ICP-
MS) | Laboratory Method
2/46, Based on US
EPA Method 200.8 | | Trace Metals ¹ **2,4 | Iron | 20-1000 μg/L | Waters for Potable
and Domestic
Purposes
Bore Waters,
Other Waters -
Dialysis Waters,
Bottled Waters | Inductively Couple
Plasma- Mass
Spectrometry (ICP-
MS) | Laboratory Method
2/46, Based on US
EPA Method 200.8 | | Trace Metals ¹ **4 | Aluminium | 20-500 μg/L | Waters for Potable
and Domestic
Purposes
Bore Waters,
Other Waters -
Dialysis Waters,
Bottled Waters | Inductively Couple
Plasma- Mass
Spectrometry (ICP-
MS) | Laboratory Method
2/46, Based on US
EPA Method 200.8 | | | Arsenic | 4-200 μg/L | Waters for Potable
and Domestic
Purposes
Bore Waters,
Other Waters -
Dialysis Waters,
Bottled Waters | Inductively Couple
Plasma- Mass
Spectrometry (ICP-
MS) | Laboratory Method
2/46, Based on US
EPA Method 200.8 | | Boron | 20-500 μg/L | Waters for Potable
and Domestic
Purposes
Bore Waters,
Other Waters -
Dialysis Waters,
Bottled Waters | Inductively Couple
Plasma- Mass
Spectrometry (ICP-
MS) | Laboratory Method
2/46, Based on US
EPA Method 200.8 | |-----------|--------------|--|---|--| | Chromium | 4-200 μg/L | Waters for Potable
and Domestic
Purposes
Bore Waters,
Other Waters -
Dialysis Waters,
Bottled Waters | Inductively Couple
Plasma- Mass
Spectrometry (ICP-
MS) | Laboratory Method
2/46, Based on US
EPA Method 200.8 | | Copper | 40-2000 μg/L | Waters for Potable
and Domestic
Purposes
Bore Waters,
Other Waters -
Dialysis Waters,
Bottled Waters | Inductively Couple
Plasma- Mass
Spectrometry (ICP-
MS) | Laboratory Method
2/46, Based on US
EPA Method 200.8 | | Lead | 4-200 μg/L | Waters for Potable
and Domestic
Purposes
Bore Waters,
Other Waters -
Dialysis Waters,
Bottled Waters | Inductively Couple
Plasma- Mass
Spectrometry (ICP-
MS) | Laboratory Method
2/46, Based on US
EPA Method 200.8 | | Manganese | 20-1000 μg/L | Waters for Potable
and Domestic
Purposes
Bore Waters,
Other Waters -
Dialysis Waters,
Bottled Waters | Inductively Couple
Plasma- Mass
Spectrometry (ICP-
MS) | Laboratory Method
2/46, Based on US
EPA Method 200.8 | | Nickel | 4-200 μg/L | Waters for Potable
and Domestic
Purposes
Bore Waters,
Other Waters -
Dialysis Waters,
Bottled Waters | Inductively Couple
Plasma- Mass
Spectrometry (ICP-
MS) | Laboratory Method
2/46, Based on US
EPA Method 200.8 | | | | Selenium | 4-200 μg/L | Waters for Potable
and Domestic
Purposes
Bore Waters,
Other Waters -
Dialysis Waters,
Bottled Waters | Inductively Couple
Plasma- Mass
Spectrometry (ICP-
MS) | Laboratory Method
2/46, Based on US
EPA Method 200.8 | |--|----------------------------|-----------|------------------|--|---|---| | | | Zinc | 40-2000 μg/L | Waters for Potable
and Domestic
Purposes
Bore Waters,
Other Waters -
Dialysis Waters,
Bottled Waters | Inductively Couple
Plasma- Mass
Spectrometry (ICP-
MS) | Laboratory Method
2/46, Based on US
EPA Method 200.8 | | | Turbidity ¹ **4 | Turbidity | 0.2 - 500 N.T.U. | Water for potable
and domestic
purposes
Drinking Waters
Bottled Waters | Nephelometry-
Formazin | Laboratory Method
2/7, Based on S.M. for
Examination of
Waters and Waste
Waters 2130B | ^{**}The laboratory has been awarded flexible scope in the ST3CRM categories as noted in the scope document and in accordance with the laboratories approved and documented procedures. Note 1 - Range may be extended for the test For further details please refer to the laboratories 'Master list of Flexible scope changes', available directly from the laboratory. Note 2 – New parameters / tests may be added Note 3 – New matrices may be added Note 4 - Equipment/kit