Schedule of Accreditation Organisation Name Trading As **INAB** Reg No Contact Name Address Contact Phone No Email Website **Accreditation Standard** Standard Version Date of award of accreditation Scope Classification Scope Classification Services available to the public¹ Saotharlann Chonamara Teo Complete laboratory solutions 108T Aoife Carter Rosmuc, Connemara, Galway 091-574355 acarter@cls.ie EN ISO/IEC 17025 T 2017 15/09/1999 Biological and veterinary testing Chemical testing Yes ¹ Refer to document on interpreting INAB Scopes of Accreditation | | Sites from which accredited services are delivered | | | | | | | |---|--|--|--|--|--|--|--| | | (the detail of the accredited services delivered at each site are on the Scope of Accreditation) | | | | | | | | | Name Address | | | | | | | | 1 | 1 Rosmuc Site , Rosmuc, Galway, Galway, Ireland Conemarra Co Galway | | | | | | | | 2 | 2 Head Office Rosmuc, Connemara, Galway | | | | | | | | 3 | 3 CLS Galway UNIT 2, 3 and 8, IDA Enterprise Park,, Tuam Road, Galway | | | | | | | # Scope of Accreditation ### **CLS Galway** #### **Biological and Veterinary Testing** | Biology/veterinary field - Tests | Test name | Technique | Matrix | Equipment | Std. reference | |--|---|---|---|-----------|--| | 803 Culture of organisms in liquid or agar based culture media with visual or instrument monitoring for growth01 Culture of bacteria | Devices | Incubation and enumeration of microorganisms. | Tests on human pharmaceutical and biological products. Bacteria, Yeasts and Moulds only | N/A | CLS 210 - ISO 11737-1:2018/AMD 1: 2021 Sterilization of health care products - Microbiological methods - Part 1: Determination of a population of microorganisms on products | | | Dual Incubation and
Enumeration of TSA
Plates | Plate count | Factory Hygiene
Surfaces
Factory Hygiene Air | N/A | CLS 190 In house method | | | Endotoxin testing of
Medical Devices | Kinetic Assay | Tests on human pharmaceutical and biological products. | N/A | CLS 211 -ANSI/AAMI St72 - Bacterial endotoxin test methodologies, routine monitoring and alternative batch testing. | | | Endotoxin Testing on
Purified Water using Gel
clot Method | Gel Clot | Tests on human pharmaceutical and biological products endotoxin tests | N/A | CLS 185 Based on ANSI/AAMI ST 72:2019 Bacterial Endotoxin test methodologies,routine monitoring and alternatives to batch testing | | | 5 | Kinetic Turbidimetric
Method | Tests on human pharmaceutical and biological products endotoxin tests | N/A | CLS 186 Based on ANSI/AAMI ST 72:2019 Bacterial Endotoxin test methodologies,routine monitoring and alternatives to batch testing, USP (85) Bacterial Endotoxin Test | | Enumeration of Microorganisms Colony count technique at 22°C, 30°C and 37°C in water | Spread plate | waters: Bacteriological condition of potable waters waters: Bacteriological condition of industrial waters Micro tests for factory hygiene purposes | N/A | CLS 95 based on the Microbiology of Drinking water part 7 (2020)- Methods for the enumeration of Heterotrophic bacteria by pour plate and spread techniques | |--|---------------------|---|-----|---| | Enumeration of Total
Coliforms and E.coli | Colilert | Waters: Factory hygiene Waters: Industrial waters Waters: Potable water Waters: Environmental Waters | N/A | CLS 33 Based on the Microbiology of Drinking Water part 4 (d) (2016) | | Enumeration of Total
Viable Counts at 22°C,
35°C and 37°C | pour plate | Waters: Industrial waters | N/A | CLS 160 fluid monitoring membrane filtration based on ISO 23500-3:2019 Water for Haemodialysis, USP 1230 Water for Haemodialysis | | Enumeration of TVC at 30°C using Membrane Filtration | Membrane Filtration | Waters: Industrial waters | N/A | CLS 171 Based on ISO 15883-1:2006/Amd
1:2014 Washer Disinfectors Part 1 and
ISO 15883-4:2018 Washer Disinfectors -
Part 4 | | Incubation and
Enumeration of SDA
Plates at 22.5°C | Plate count | Factory Hygiene
Surfaces
Factory Hygiene Air | N/A | CLS 187 In house method | | Incubation and
Enumeration of TSA
Plates at 32.5°C | | Factory Hygiene
Surfaces
Factory Hygiene Air | N/A | CLS 188 in house method | ## **CLS Galway** ## **Chemical Testing** | Chemistry Field - Tests | Test name | Analyte | Range of measurement | Matrix | Equipment/technique | Standard reference/SOP | |---|-----------|-----------|----------------------|----------------|---------------------|---| | 766 Environmental testing (inc waters)01 Metal analysis | Aluminium | Aluminium | 2 - 500 ug/l | Drinking Water | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | | Antimony | Antimony | 0.5 - 250 ug/l | Drinking Water | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | | Arsenic | Arsenic | 0.5 - 250 ug/l | Drinking Water | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | | Barium | Barium | 0.5 - 250 ug/l | Drinking Water | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | | Beryllium | Beryllium | 0.5 - 250 ug/l | Drinking Water | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | | Boron | Boron | 10 - 500 ug/l | Drinking Water | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | | Cadmium | Cadmium | 0.5 - 250 ug/l | Drinking Water | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | | Calcium | Calcium | 3 - 300 mg/l | Drinking Water | ICP-MS | Documented in house method based on | | | | | | | USEPA 200.8 ICP-MS
CLS 129 | |------------|----------------|----------------|----------------|--------|---| | Chromium | Chromium | 0.5 - 250 ug/l | Drinking Water | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | Cobalt | Drinking Water | 0.5 - 250 ug/l | Cobalt | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | Copper | Copper | 1 - 500 ug/l | Drinking Water | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | Iron | Iron | 10 - 500 ug/l | Drinking Water | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | Lead | Lead | 0.5 - 250 ug/l | Drinking Water | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | Magnesium | Magnesium | 0.8 - 80 mg/l | Drinking Water | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | | Waste Water | 0.8 - 80 mg/l | Magnesium | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | Manganese | Manganese | 5 - 250 ug/l | Drinking Water | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | Molybdenum | Molybdenum | 0.5 - 250 ug/l | Drinking Water | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | Nickel | Nickel | 0.5 - 250 ug/l | Drinking Water | ICP-MS | Documented in house method based on | | | | | | | USEPA 200.8 ICP-MS
CLS 129 | |-----------|-----------|----------------|----------------|--------|---| | Potassium | Potassium | 0.5 - 50 mg/l | Drinking Water | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | Selenium | Selenium | 0.5 - 250 ug/l | Drinking Water | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | Silver | Silver | 0.5 - 125 ug/l | Drinking Water | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | Sodium | Sodium | 1 - 100 mg/l | Drinking Water | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | Strontium | Strontium | 0.5 - 250 ug/l | Drinking Water | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | Tellurium | Tellurium | 0.5 - 250 ug/l | Drinking Water | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | Thallium | Thallium | 0.5 - 250 ug/l | Drinking Water | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | Tin | Tin | 0.5 - 250 ug/l | Drinking Water | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | Zinc | Zinc | 5 - 500 ug/l | Drinking Water | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | ## **Head Office** ## **Biological and Veterinary Testing** | Biology/veterinary field - Tests | Test name | Technique | Matrix | Equipment | Std. reference |
--|---|---|---|-----------|---| | 802 Preparation of films on slides followed by microscopic examination with or without fixation and staining with dyes as required02 Microscopic examination for parasites | Detection and Enumeration of Cryptosporidium oocysts | Filta Max | Waters: enumeration of
Free living Protoza
Waters: Environmental
waters
Waters: Potable water | Filta Max | CLS 139 Based on MODW
(2010) Part 14 and U.S EPA
Method 1623:1 (2012) | | 803 Culture of organisms in liquid or agar based culture media with visual or instrument monitoring for growth01 Culture of bacteria | Detection and Enumeration of
Legionella species in water and the
detection of Legionella pneumophila,
serogroups 1 and 2-14 and
presumptive spp(not legionella
pneumophilia 1 -14) | Direct filtration,
Acid treatment and
Inoculation of
selective media | Factory Hygiene
Surfaces | N/A | CLS 100 Based on ISO
11731:2017 Procedure 7, Matrix
A | | | | | Waters: Industrial waters (treated, recirculating) | N/A | CLS 100 Based on ISO
11731:2017 Procedure 7, Matrix
A | | | Detection of Campylobacter spp | Resuscitation | Confectionary Dairy products Eggs and Egg products Fish, Shellfish and Mollusks Fruit and Vegetables Meat and Meat products, game and poultry Cereals and bakery products Factory Hygiene Surfaces Prepared dishes Soups, broths and Sauces | N/A | CLS 181 Based on ISO 10272-
1:2017/Amd 1:2023 - Procedure
A | | Detection of E.coli 0157 | |-------------------------------------| | Detection of Ecoli 0157 | | Detection of Listeria monocytogenes | | Factory Hygiene
Surfaces | N/A | CLS 11 Based on ISO
16654:2001/ Amd 2:2023 | |--|-----|--| | Cereals and Bakery products Dairy Products Factory hygiene surfaces Meat and Meat products, game and poultry Prepared dishes Soups, Broths and Sauces | N/A | CLS 11 based on ISO
16654:2001/ Amd 2:2023 | | Cereals and Bakery products Dairy Products Factory hygiene surfaces Meat and Meat products, game and poultry Prepared dishes Soups, Broths and Sauces | N/A | CLS 159 Based on Reveal for
Ecoli 0157 20 hour system | | Fish, Shellfish and Molluscs Dairy products Meat and Meat Products game and poultry Eggs and Egg products Cereals and Bakery Products Confectionary Fruit and Vegetables Animal Feed Pet Foods Factory Hygiene Surfaces Soups, Broths and Sauces Prepared Dishes | N/A | CLS 4 Based on IS EN ISO 11290-1:2017 | | Detection of listeria monocytogenes by ALOA One Day Method | Animal feeder Cereals and Bakery Products Confectionary Dairy products Eggs and Egg products Factory Hygiene Surfaces Fish, Shellfish and Molluscs Fruit and Vegetables Meat and Meat products, game and poultry Cereals and bakery products Factory Hygiene Surfaces Meat surfaces Product contact surfaces Soups, broths and Sauces | N/A | CLS 163 Based on AES ALOA
One Day (AFNOR cert AES
10/03-09/00) | |--|---|-----|--| | Detection of listeria species by ALOA One Day Method | Cereals and Bakery Products Confectionary Dairy products Eggs and Egg products Fish, Shellfish and Mollusks Fruit and Vegetables Meat and Meat products, game and poultry Cereals and bakery products Factory Hygiene Surfaces Meat surfaces Product contact | N/A | CLS 164 Based on AES ALOA
One Day (AFNOR cert AES
10/03-09/00) | | | | surfaces
Prepared dishes
Soups, broths and
Sauces | | | |--------------------------------|------------|---|-----|--| | Detection of salmonella | | Meat Surfaces Product contact surfaces Fish, Shellfish and Molluscs Dairy products Meat and Meat Products game and poultry Eggs and Egg products Cereals and Bakery Products Confectionary Fruit and Vegetables Animal Feed Pet Foods Factory Hygiene Surfaces 'Factory Hygiene Surfaces and Environmental Swabs for poultry Primary Production' Soups, Broths and Sauces Prepared Dishes | N/A | CLS 2 Based on ISO 6579-
1:2017/Amd 1:2020 | | | | Waters: Factory hygiene
Waters: Industrial
waters
Waters: Potable water | N/A | CLS 45 Based on the
Microbiology of Drinking Water
(2006) Part 9 | | Enumeration of Total Coliforms | Pour Plate | Fish, Shellfish and
Molluscs
Dairy products
Meat and Meat Products
game and poultry
Eggs and Egg products
Cereals and Bakery | N/A | CLS 8 Based on ISO 4832:200 | | | | Products Confectionary Fruit and Vegetables Animal Feed Pet Foods Factory Hygiene Surfaces | | | |--|------------------------|--|-----|--| | Enumeration of Clostridium perfringens | Membrane
Filtration | Waters: Factory hygiene
Waters: Industrial
waters
Waters: Potable water
Waters: Environmental
Waters Including
Effluents | N/A | CLS 43 Based on the
Microbiology of Drinking Water
(2021) Part 6 (b) | | Enumeration of Campylobacter species in food | Spread Plate | Dairy products Eggs and Egg products Meat and Meat Products game and poultry Fish, Shellfish and Molluscs Soups, Broths and Sauces Cereals and Bakery Products Fruit and Vegetables Confectionary Prepared Dishes Animal Feed Meat and Meat Products game and poultry Factory Hygiene Surfaces | | CLS 197 Based on ISO/TS
10272-2:2017/Amd1:2023 | | Enumeration of Clostridium
Perfringens | pour plate | non alcoholic beverages
Fish, Shellfish and
Molluscs
Dairy products
Meat and Meat Products
game and poultry
Eggs and Egg products
Cereals and Bakery | | CLS 7 Based on ISO 7937:2004 | | | | Products Confectionary Fruit and Vegetables Animal Feed Pet Foods | | | |---|----------------------------|--|-----|--| | Enumeration of Coagulase positive Staphylococci | Spread Plate | Cereals and Bakery Products Fish, Shellfish and Molluscs Dairy products Meat and Meat Products game and poultry Eggs and Egg products Confectionary Fruit and Vegetables Animal Feed Pet Foods Factory Hygiene Surfaces Soups, Broths and Sauces Prepared Dishes | N/A | CLS 3 Based on IS EN ISO 6888-1:2022 | | Enumeration of E.coli | | Dairy products Meat and Meat Products game and poultry Eggs and Egg products Cereals and Bakery Products Confectionary Fruit and Vegetables Animal Feed Pet Foods Factory Hygiene Surfaces Soups, Broths and Sauces Prepared Dishes | N/A | CLS 198 Based on ISO 16649-
2:2001 | | Enumeration of E.coli using an MPN method | MPN (5 tubes, 3 dilutions) | Fish, Shellfish and
Molluscs | N/A | CLS 92 Based on Cefas
Protocol Issue 1, 29/06/2020
Enumeration of Ecoli in | | | | | | Molluscan Bivalve Shellfish and ISO 16649-3:2015 | |--|------------------------------|---|-----|--| | Enumeration of Enterobacteriaceae | Pour Plate | Meat Surfaces Product contact surfaces Fish, Shellfish and Molluscs Dairy products Meat and Meat Products game and poultry Eggs and Egg products Cereals and Bakery Products Confectionary Fruit and Vegetables Animal Feed Pet Foods Factory Hygiene Surfaces
Soups, Broths and Sauces Prepared Dishes | N/A | CLS 21 based on IS EN ISO 21528-2:2017 | | Enumeration of Enterobacteriaceae (Single Plate) | pour plate (single
plate) | Animal feed Dairy products Eggs and Egg products Meat and meat products, game and poultry Fish, Shellfish and Molluscs Fruit and Vegetables Pet Foods | N/A | CLS 134 In House Method | | Enumeration of Enterococci | Membrane
Filtration | Waters: Environmental
Waters Including
Effluents | N/A | CLS 42 Based on the
Microbiology of Drinking Water
(2012) Part 5 (a) | | | | Waters: Factory hygiene
Waters: Industrial
waters
Waters: Potable water
Waters: Environmental
Waters Including | | CLS 42 Based on the
Microbiology of Drinking Water
(2012) Part 5 (a) | | | | Effluents | | | |--|----------------------------|---|-----|---| | Enumeration of Listeria Species including Listeria Monocytogenes | Resuscitation | Confectionery Dairy products Eggs and Egg products Fruit and Vegetables Meat and Meat products, game and poultry Cereals and bakery products Factory Hygiene Surfaces Fish, Shellfish and Molluscs Prepared Dishes Soups, Broths and Sauces | N/A | CLS 6 Based on IS EN ISO
11290-2:2017 | | Enumeration of micro organisms at 22°C | Spread Plate | Fish, Shellfish and
Molluscs | N/A | CLS 48 Based on IS EN ISO
4833-2:2013 Cor 1:2014 | | | | non alcoholic beverages Fish, Shellfish and Molluscs Dairy products Meat and Meat Products game and poultry Eggs and Egg products Confectionary Fruit and Vegetables Animal Feed Pet Foods | N/A | CLS 48 based on IS EN ISO
4833-2:2013 Cor 1:2014/
Amd1:2022 | | | TVC @ 22°C -
pour plate | non alcoholic beverages
Fish, Shellfish and
Molluscs
Dairy products
Meat and Meat Products
game and poultry | N/A | CLS 47 based on IS EN ISO
4833-2:2013 Cor 1:2014,
Amd1:2022 | | | | Eggs and Egg products
Confectionary
Fruit and Vegetables
Animal Feed
Pet Foods | | | |--|------------------------------|--|-----|---| | Enumeration of Micro organisms at 30°C | TVC @ 30°C – pour plate | Animal feed Confectionery Dairy products Eggs and Egg products Fish, Shellfish and Mollusks Fruit and Vegetables Meat and Meat products, game and poultry Pet foods Cereals and bakery products Non-alcoholic beverages Factory Hygiene Surfaces Meat surfaces Product contact surfaces Prepared dishes Soups, broths and Sauces | | CLS 15 based on IS EN ISO 4833-1:2013/ Amd 1:2022 | | | TVC @ 30°C -
spread plate | Animal feed Confectionery Dairy products Eggs and Egg products Fish, Shellfish and Mollusks Fruit and Vegetables Meat and Meat products, game and poultry Pet foods Cereals and bakery products Non-alcoholic | N/A | CLS 46 based on IS EN ISO
4833-2:2013 Cor 1:2014/Amd
1:2022 | | | | beverages Factory Hygiene Surfaces Meat surfaces Product contact surfaces Prepared dishes Soups, broths and Sauces | | | |--|------------------------------|--|-----|--| | Enumeration of micro organisms at 37°C | TVC @ 37°C -
pour plate | Animal feed Confectionery Dairy products Eggs and Egg products Fish, Shellfish and Molluscs Fruit and Vegetables Meat and Meat products, game and poultry Pet foods Non-alcoholic beverages | N/A | CLS 49 Based on IS EN ISO
4833-1:2013, Amd 1:2022 | | | TVC @ 37°C -
spread plate | Non-alcoholic
beverages | N/A | CLS 50 Based on IS EN ISO
4833-1:2013/Amd 1:2022 | | Enumeration of Presumptive Bacillus cereus | Spread Plate | Dairy products Meat and Meat Products game and poultry Eggs and Egg products Cereals and Bakery Products Confectionary Fruit and Vegetables Animal Feed Pet Foods Soups, Broths and Sauces Prepared Dishes | N/A | CLS 20 Based on IS EN ISO 7932:2004/Amd:2020 | | Enumeration of Presumptive Pseudomonas SPP | | non alcoholic beverages
Meat and Meat Products
game and poultry | | CLS 22 Based on ISO
13720:2010 | |--|---------------------------|---|-----|--| | Enumeration of Pseudomonas aeruginosa | Membrane
Filtration | Waters: Factory hygiene
Waters: Industrial
waters
Waters: Potable water
Waters: Environmental
water | N/A | CLS 44 Based on the
Microbiology of Drinking water
Part 8 (2015) | | Enumeration of ß-glucuronidase positive E.coli:Colony Count Technique at 44°C using 5-bromo-4-chloro-3-indolyl-ß-D-glucuronide | Pour Plate | Dairy products Eggs and Egg products Meat and Meat Products game and poultry Fish, Shellfish and Molluscs Soups, Broths and Sauces Cereals and bakery products Fruit and Vegetables Confectionary Prepared Dishes Animal Feed | N/A | CLS 198 Based on ISO 16649-
2:2018 | | Enumeration of Total Coliforms and E.coli | Colilert | Waters: Factory hygiene
Waters: Industrial
waters
Waters: Potable water | N/A | CLS 33 Based on the
Microbiology of Drinking Water
(2016) Part 4 (d) | | | Membrane
Filtration | Waters: Factory hygiene
Waters: Industrial
waters
Waters: Potable water
Waters: Environmental
waters including
effluents | N/A | CLS 16 Based on the
Microbiology of Drinking Water
(2016) Part 4 (a) and ISO
9308:2014/Amd 1:2016 | | Enumeration of TVC at 22°C, 30°C and at 37°C (Single plate) | Pour Plate (single plate) | Animal feed Dairy products Eggs and Egg products Factory Hygiene Surfaces | N/A | CLS 132 In House Method | | | | Fish, Shellfish and
Molluscs
Fruit and Vegetables
Meat and Meat
products, game and
poultry
Pet foods
Non-alcoholic
beverages | | | |---|------------------------|--|-----|---| | | | Dairy products Eggs and Egg products Meat and Meat Products game and poultry Fish, Shellfish and Molluscs Fruit and Vegetables Non-alcoholic Beverages Pet Foods Animal Feed | N/A | CLS 133 In House Method | | Enumeration of TVCs (Air Settlement plates) | Plate count | Factory Hygiene Air | N/A | CLS 82 In house method | | Enumeration of TVCs contact plates | Contact Plates | Factory Hygiene
Surfaces | | CLS 80 Based on ISO
18593:2018 | | Enumeration of Yeast and Mould | Plate count | Factory Hygiene Air | N/A | CLS 130 In House Method | | | Spread Plate | Cereals and Bakery products Dairy products Factory Hygiene Surfaces Fruit and Vegetables Non-alcoholic beverages Prepared dishes | | CLS 1 Based on ISO 21527-1
and 2:2008 | | Membrane Filtration Method using
Chromocult Agar | Membrane
Filtration | Waters: Potable water | | CLS 199 Based on ISO 9308-
1:2014 Detection and
Enumeration of Total Coliforms
and E.coli in water with low
bacterial Flora | ## **Head Office** ## **Chemical Testing** | Chemistry Field - Tests | Test name | Analyte | Range of measurement | Matrix | Equipment/technique | Standard reference/SOP | |---|--|-----------|---------------------------|--|---------------------|---| | 766 Environmental testing (inc waters) | Ammonia in Saline
Waters by
spectrophotometry | Ammonia | 0.010 -1.00mg/l as N | Saline | Spectrophotometer | CLS 202 | | | Nitrate in Saline Waters by spectrophotometry | Nitrate | 0.003 - 1.0 mg/l as N | Saline | Spectrophotometer | CLS 203 | | | Nitrite in Saline Waters by spectrophotometry | Nitrite | 0.003 -0.10 mg/l as
N | Saline | Spectrophotometer | CLS 204 | | | Phosphate in Saline
Waters and Phosphate
low levels in Surface
Waters | Phosphate | 0.003 - 0.40 mg/l as
P | Saline | Spectrophotometer | CLS 205 | | | | | 0.003 - 0.40 mg/l as
P | Surface | Spectrophotometer | CLS 205 | | 766 Environmental testing (inc waters)01 Metal analysis | Aluminium | | 2 μg - 10,000 μg/L | Bore Waters Other waters (surface waters) Waste water treatment plants effluent (WWTP effluent) Waters for Potable and Domestic Purposes | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | | Antimony | | 0.5 µg - 5,000
µg/L | Bore Waters Other waters (surface waters) Waste water treatment plants effluent (WWTP effluent) Waters for Potable | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | Arsenic | |-----------| | | | | | | | | | Barium | | | | | | | | | | Beryllium | | | | | | | | | | Boron | | | | | | | | | | | | | and Domestic
Purposes | | | |---------------------|--|--------|---| | 0.5 μg - 5,000 μg/L | Bore Waters Other waters (surface waters) Waste water treatment plants effluent (WWTP effluent) Waters for Potable and Domestic Purposes | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | 0.5 μg - 5,000 μg/L | Bore Waters Other waters (surface waters) Waste water treatment plants effluent (WWTP effluent) Waters for Potable and Domestic Purposes | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | 0.5 μg - 5,000 μg/L | Bore Waters Other waters (surface waters) Waste water treatment plants effluent (WWTP effluent) Waters for Potable and Domestic Purposes | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | 10 μg - 10,000 μg/L | Bore Waters Other waters (surface waters) Waste water treatment plants effluent (WWTP effluent) Waters for Potable and Domestic Purposes | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | Cadmium | |----------| | | | Calcium | | | | Chromium | | | | Cobalt | | | | Copper | | 0.5 μg - 5,000μg/L | Bore Waters Other waters (surface waters) Waste water treatment plants effluent (WWTP effluent) Waters for Potable and Domestic Purposes | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | |---------------------|--|--------|---| | 3 mg - 3,000 mg/L | Bore Waters Other waters (surface waters) Waste water treatment plants effluent (WWTP effluent) Waters for Potable and Domestic Purposes | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | 0.5 μg - 5,000μg/L | Bore Waters Other waters (surface waters) Waste water treatment plants effluent (WWTP effluent) Waters for Potable and Domestic Purposes | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | 0.5 μg - 5,000 μg/L | Bore Waters Other waters (surface waters) Waste water treatment plants effluent (WWTP effluent) Waters for Potable and Domestic Purposes | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | 1 μg - 10,000 μg/L | Bore Waters
Other waters | ICP-MS | Documented in house method based on | | | | | (surface waters) Waste water treatment plants effluent (WWTP effluent) Waters for Potable and Domestic Purposes | | USEPA 200.8 ICP-MS
CLS 129 | |--------------|---------|---------------------|--|--------|---| | ICPM Metals | Mercury | 0.05-2.5ug/l | Waste Water | ICPMS | CLS 129/USEP A
200.8 | | ICPMS Metals | | 0.05-2.5ug/l | Drinking Water | ICPMS | CLS 129/USEP A 200.8 | | | | 0.05-2.5ug/l | Ground Water | ICPMS | CLS 129/USEP A
200.8 | | | | 0.05-2.5ug/l | Surface Water | ICPMS | CLS 129/USEP A 200.8 | | | Silver | 0.5-125ug/l | Ground Water | ICPMS | CLS 129/USEP A 200.8 | | | | 0.5-125ug/l | Surface Water | ICPMS | CLS 129/USEP A
200.8 | | | | 0.5-125ug/l | Waste Water | ICPMS | CLS 129/USEP A 200.8 | | Iron | | 10 μg - 10,000 μg/L | Bore Waters Other waters (surface waters) Waste water treatment plants effluent (WWTP effluent) Waters for Potable and Domestic Purposes | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | Lead | | 0.5 μg - 5,000 μg/L | Bore Waters Other waters (surface waters) Waste water treatment plants effluent (WWTP effluent) Waters for Potable | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | Magnesium | |------------| | | | | | | | | | Manganese | | | | | | | | Molybdenum | | worybacham | | | | | | | | Nickel | | | | | | | | | | | | | and Domestic
Purposes | | | |---------------------|--|--------|---| | 0.8 mg - 800 mg/L | Bore Waters Other waters (surface waters) Waste water treatment plants effluent (WWTP effluent) Waters for Potable and Domestic Purposes | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | 5 μg - 5,000 μg/L | Bore Waters Other waters (surface waters) Waste water treatment plants effluent (WWTP effluent) Waters for Potable and Domestic Purposes | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | 0.5 μg - 5,000 μg/L | Bore Waters Other waters (surface waters) Waste water treatment plants effluent (WWTP effluent) Waters for Potable and Domestic Purposes | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | 0.5 μg - 5,000 μg/L | Bore Waters Other waters (surface waters) Waste water treatment plants effluent (WWTP effluent) Waters for Potable and Domestic Purposes | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | Potassium | _ | |-----------|---| | Selenium | | | Sodium | | | Strontium | | | Tellurium | | | 0.5 mg - 500 mg/L | Bore Waters Other waters (surface waters) Waste water treatment plants effluent (WWTP effluent) Waters for Potable and Domestic Purposes | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | |---------------------|--|--------|---| | 0.5 μg - 5,000 μg/L | Bore Waters Other waters (surface waters) Waste water treatment plants effluent (WWTP effluent) Waters for Potable and Domestic Purposes | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | 1 mg - 1,000 mg/L | Bore Waters Other waters (surface waters) Waste water treatment plants effluent (WWTP effluent) Waters for Potable and Domestic Purposes | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | 5 μg - 5,000 μg/L | Bore Waters Other waters (surface waters) Waste water treatment plants effluent (WWTP effluent) Waters for Potable and Domestic Purposes | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | 0.5 μg - 5,000 μg/L | Bore Waters
Other waters | ICP-MS | Documented in house method based on | | Thallium | |---------------------------------------| | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | | | Tin | | | | | | | | | | | |
Vanadium | | variadiditi | | | | | | | | | | | | Zinc | | | | | | | | | (surface waters) Waste water treatment plants effluent (WWTP effluent) Waters for Potable and Domestic Purposes | | USEPA 200.8 ICP-MS
CLS 129 | |---------------------|--|--------|---| | 0.5 μg - 5,000 μg/L | Bore Waters Other waters (surface waters) Waste water treatment plants effluent (WWTP effluent) Waters for Potable and Domestic Purposes | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | 0.5 μg - 5,000 μg/L | Bore Waters Other waters (surface waters) Waste water treatment plants effluent (WWTP effluent) Waters for Potable and Domestic Purposes | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | 0.5 μg - 5,000 μg/L | Bore Waters Other waters (surface waters) Waste water treatment plants effluent (WWTP effluent) Waters for Potable and Domestic Purposes | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | 5 μg - 10,000 μg/L | Bore Waters
Other waters
(surface waters)
Waste water | ICP-MS | Documented in house
method based on
USEPA 200.8 ICP-MS
CLS 129 | | | | | | treatment plants
effluent (WWTP
effluent)
Waters for Potable
and Domestic
Purposes | | | |---|------------------------------|------|------------------|--|----------------------------|--| | 766 Environmental testing
(inc waters)02
Biochemical oxygen
demand | Biochemical Oxygen
Demand | | 1-7,000 mg/L | Bore waters Other waters (surface waters) Saline waters Sewage Trade wastes Waters for potable and domestic purposes Waste water treatment plants effluent (WWTP effluent) | DO Probe | Documented in house method based on APHA standard methods for the examination of water and waste 24th edition, 2020 (unless otherwise stated) CLS 12 Measurement of Oxygen consumed over 5 days (APHA 5210B) | | | BOD using
automated system | BOD | 1-3000 mg/l | , | Automated BOD
Analyser | Standard Methods for
the Examination of
Water and
Wastewater, 24th ed.
2023. CLS214 | | | cBOD using automated system | cBOD | 1-3000 mg/l | | Automated cBOD
Analyser | Standard Methods for
the Examination of
Water and
Wastewater, 24th ed.
2023 CLS214 | | 766 Environmental testing (inc waters)03 Chemical oxygen demand | | | 10 - 30,000 mg/L | Bore waters Other waters (surface waters) Saline waters Sewage Trade wastes Waters for potable and domestic purposes Waste water treatment plants effluent (WWTP effluent) | DR5000 | CLS 52 Based on
Hach Procedures
Manual 9th Edition
1999 and standard
methods for the
examination of water
and wastewater 24th
edition, 2023 | | 766 Environmental testing (inc waters)04 Organic | Benzene | |--|----------------------| | | Ethylbenzene | | | o-Xylene | | | t-butyl methyl ether | | | Benzene | | 10-10,000 μg/L | Bore Waters Other waters (surface waters) Saline waters Trade wastes Waters for Potable and domestic purposes | GC-FID | In house method CLS
148 based on USEPA
8015B | |--------------------------|---|--------|---| | 10-10,000 µg/L | Bore Waters Other waters (surface waters) Saline waters Trade wastes Waters for Potable and domestic purposes | GC-FID | In house method CLS
148 based on USEPA
8015B | | 10-10,000 µg/L | Bore Waters Other waters (surface waters) Saline waters Trade wastes Waters for Potable and domestic purposes | GC-FID | In house method CLS
148 based on USEPA
8015B | | 10-10,000 µg/L | Bore Waters Other waters (surface waters) Saline waters Trade wastes Waters for Potable and domestic purposes | GC-FID | In house method CLS
148 based on USEPA
8015B | | 0.01mg/kg to 20
mg/kg | Sediments | GC-FID | In house method CLS
157 and CLS 148
based on USEPA
8015B | | 0.01mg/kg to 20
mg/kg | Sediments
Soils (Loam, Sand
and Peat) | GC-FID | In house method CLS
157 and CLS 148
based on USEPA
8015B | | Ethylbenzene | |--| | | | | | | | | | | | | | Extractable | | Hydrocarbons by GC- | | FID Diesel Range and | | Lube Oil (C ₈ - C ₄₀) | m / p- Xylene | 0.01mg/kg to 20
mg/kg | Sediments | GC-FID | In house method CLS
157 and CLS 148
based on USEPA
8015B | |---|--|--------|--| | 0.01mg/kg to 20
mg/kg | Sediments
Soils (Loam, Sand
and Peat) | GC-FID | In house method CLS
157 and CLS 148
based on USEPA
8015B | | 10-10,000 μg/L
10-10,000 μg/L
10-10,000 μg/L
10-10,000 μg/L
10-10,000 μg/L
10-10,000 μg/L
200-10,000 μg/L | Bore Waters Other waters (surface waters) Saline waters Sewage Trade wastes Waters for Potable and Domestic Purposes Waste Water Treatment plants Effluent (WWTP effluent) | GC-FID | CLS 147 Method
based on USEPA
8015B | | 200 mg/kg to 2,000
mg/kg
50 mg/kg to 2,000
mg/kg
50 mg/kg to 2,000
mg/kg | Peat
Sediments
Soils (Loam, and
Sand) | GC-FID | In house method CLS
156 and CLS 147
Method adapted from
8015B | | 0.02 mg/kg to 40
mg/kg | Sediments | GC-FID | In house method CLS
157 and CLS 148
based on USEPA
8015B | | 0.02 mg/kg to 40
mg/kg | Sediments
Soils (Loam, Sand
and Peat) | GC-FID | In house method CLS
157 and CLS 148
based on USEPA
8015B | | 20 - 20,000 μg/L | Bore Waters
Other waters
(surface waters)
Saline waters | GC-FID | In house method CLS
148 based on USEPA
8015B | | | | | Trade wastes
Waters for Potable
and domestic
purposes | | | |--|--|--------------------------|--|---------------------------|---| | o-Xylene | | 0.01mg/kg to 20
mg/kg | Sediments | GC-FID | In house method CLS
157 and CLS 148
based on USEPA
8015B | | | | 0.01mg/kg to 20
mg/kg | Sediments
Soils (Loam, Sand
and Peat) | GC-FID | In house method CLS
157 and CLS 148
based on USEPA
8015B | | PAH by HPLC | Polycylic Aromatic
Hydrocarbons (sum of
4) | 0.04-1.6ug/l | Drinking Water | Calculation based on HPLC | CLS 149/ISO 17993
and Agilent 1200 User
Manual | | Petrol Range Organics
(PRO) (C5 to C12) | | 0.1mg/kg to 169
mg/kg | Sediments | GC-FID | In house method CLS
157 and CLS 148
based on USEPA
8015B | | | | 0.1mg/kg to 169
mg/kg | Soils (Loam, Sand and Peat) | GC-FID | In house method CLS
157 and CLS 148
based on USEPA
8015B | | | | 10-56,250 μg/L | Bore Waters | GC-FID | In house method CLS
148 based on USEPA
8015B | | | | 10-56,250 μg/L | Other waters (surface waters) | GC-FID | In house method CLS
148 based on USEPA
8015B | | | | 10-56,250 μg/L | Saline Waters | GC-FID | In house method CLS
148 based on USEPA
8015B | | | | 10-56,250 μg/L | Trade Wastes | GC-FID | In house method CLS
148 based on USEPA
8015B | | | | 10-56,250 μg/L | Waters for Potable and Domestic Purposes | GC-FID | In house method CLS
148 based on USEPA
8015B | | Polycyclic Aromatic
Hydrocarbon by HPLC
Acenaphthene | |---| | Polycyclic Aromatic
Hydrocarbon by HPLC
Acenaphylene | | Polycyclic Aromatic
Hydrocarbon by HPLC
Anthracene | | Polycyclic Aromatic
Hydrocarbon by HPLC
Benzo (a) fluoranthene | | Polycyclic Aromatic
Hydrocarbon by HPLC
Benzo (a) pyrene | | Polycyclic Aromatic
Hydrocarbon by HPLC
Benzo (b) fluoranthene | | Polycyclic Aromatic
Hydrocarbon by HPLC
Benzo (g,h,i) perylene | | Polycyclic Aromatic
Hydrocarbon by HPLC
Benzo (k) fluoranthene | | Polycyclic Aromatic
Hydrocarbon by HPLC
Dibenzo (a,h)
anthracene | | 10 - 400 ng/l | Waters for Potable
and Domestic
Purposes | HPLC | CLS 149 Based onISO
17993 and Agilent
12000 series G1321A
user manual | |-------------------------------|--|------|--| | 50 - 400 ng/l | Other waters Waters for Potable and Domestic Purposes | HPLC | CLS 149 Based onISO
17993 and Agilent
12000 series G1321A
user manual | | 10 - 400 ng/l | Other waters Waters for Potable and Domestic Purposes | HPLC | CLS 149 Based onISO
17993 and Agilent
12000 series G1321A
user manual | | 10 - 400 ng/l | Other waters Waters for Potable and Domestic Purposes | HPLC | CLS 149 Based onISO
17993 and Agilent
12000 series G1321A
user manual | | 10 - 400 ng/l
5 - 400 ng/l | Other waters Waters for Potable and Domestic Purposes | HPLC | CLS 149 Based onISO
17993 and Agilent
12000 series G1321A
user manual | | 10 - 400 ng/l | Other waters | HPLC | CLS 149 Based onISO
17993 and Agilent
12000 series G1321A
user manual | | 10 - 400 ng/l | Waters for Potable and Domestic Purposes | HPLC | CLS 149 Based onISO
17993 and Agilent
12000 series G1321A
user manual | | 10 - 400 ng/l | Other waters Waters for Potable and Domestic Purposes | HPLC | CLS 149 Based onISO
17993 and Agilent
12000 series G1321A
user manual | | 10 - 400 ng/l | Other waters Waters for Potable and Domestic Purposes | HPLC | CLS 149 Based onISO
17993 and Agilent
12000 series G1321A
user manual | | 10 - 400 ng/l | Other waters
Waters for Potable
and Domestic
Purposes | HPLC | CLS 149 Based onISO
17993 and Agilent
12000 series G1321A
user manual | | Polycyclic Aromatic
Hydrocarbon by HPLC
Fluorene | |---| | Polycyclic Aromatic
Hydrocarbon by HPLC
Fluroanthene | | Polycyclic Aromatic
Hydrocarbon by HPLC
Indeno (1,2,3-cd)
perylene | | Polycyclic Aromatic
Hydrocarbon by HPLC
Naphthalene | | Polycyclic Aromatic
Hydrocarbon by HPLC
Phenanthrene | | Polycyclic Aromatic
Hydrocarbon by HPLC
Pyrene | | t-butyl methyl ether | | Toluene | | 10 - 400 ng/l | Other waters
Waters for Potable
and Domestic
Purposes | HPLC | CLS 149 Based onISO
17993 and Agilent
12000 series G1321A
user manual | |--------------------------|--|--------|--| | 10 - 400 ng/l | Other waters Waters for Potable and Domestic Purposes | HPLC | CLS 149 Based onISO
17993 and Agilent
12000 series G1321A
user manual | | 10 - 400 ng/l | Other waters
Waters for Potable
and Domestic
Purposes | HPLC | CLS 149 Based onISO
17993 and Agilent
12000 series G1321A
user manual | | 50 - 400 ng/l | Other waters
Waters for Potable
and Domestic
Purposes | HPLC | CLS 149 Based onISO
17993 and Agilent
12000 series G1321A
user manual | | 10 - 400 ng/l | Other waters
Waters for Potable
and Domestic
Purposes | HPLC | CLS 149 Based onISO
17993 and Agilent
12000 series G1321A
user manual | | 50 - 400 ng/l | Other waters
Waters for Potable
and Domestic
Purposes | HPLC | CLS 149 Based
onISO
17993 and Agilent
12000 series G1321A
user manual | | 0.01mg/kg to 20
mg/kg | Sediments | GC-FID | In house method CLS
157 and CLS 148
based on USEPA
8015B | | 0.01mg/kg to 20
mg/kg | Sediments
Soils (Loam, Sand
and Peat) | GC-FID | In house method CLS
157 and CLS 148
based on USEPA
8015B | | 0.01mg/kg to 20
mg/kg | Sediments | GC-FID | In house method CLS
157 and CLS 148
based on USEPA
8015B | | 0.01mg/kg to 20
mg/kg | Sediments
Soils (Loam, Sand
and Peat) | GC-FID | In house method CLS
157 and CLS 148
based on USEPA
8015B | | • | | | | | |--|---|---|--------|--| | | 10-10,000 μg/L | Bore Waters Other waters (surface waters) Saline waters Trade wastes Waters for Potable and domestic purposes | GC-FID | In house method CLS
148 based on USEPA
8015B | | Total Extractable Petroleum Hydrocarbons by GC- FID TPH (>nC5 to C44) | 20 - 10,000 μg/l | Bore Waters
Other waters
(surface waters) | GC-FID | Based on USEPA
8015B modified.
Documented in house
method CLS 193 | | VOC by GCMSD | | Drinking Water | GCMSD | CLS 183/USEPA
524.3 | | Volatile Organic
compounds (VOC)
including
Trihalomethanes (THM)
1,1,1,2-
Tetrachloroethane | 2-50 μg/l
0.5-50 μg/l
0.5-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | Volatile Organic
compounds (VOC)
including
Trihalomethanes (THM)
1,1,1-trichloroethane | 0.5-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | Volatile Organic
compounds (VOC)
including
Trihalomethanes (THM)
1,1,2,2-
tetrachloroethane | 4-50 μg/l
0.5-50 μg/l
0.5-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | Volatile Organic
compounds (VOC)
including
Trihalomethanes (THM)
1,1,2-trichloroethane | |---| | Volatile Organic
compounds (VOC)
including
Trihalomethanes (THM)
1,1-Dichloroethane | | Volatile Organic
compounds (VOC)
including
Trihalomethanes (THM)
1,1-dichloroethene | | Volatile Organic
compounds (VOC)
including
Trihalomethanes (THM)
1,1-dichloropropene | | Volatile Organic
compounds (VOC)
including
Trihalomethanes (THM)
1,2,3-trichlorobenzene | | Volatile Organic
compounds (VOC)
including
Trihalomethanes (THM)
1,2,3-trichloropropane | | Volatile Organic
compounds (VOC)
including
Trihalomethanes (THM)
1,2,4-trichlorobenzene | | 2-50 μg/l
0.5-50μg/l
0.5-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | |--|--|-------|--| | 2-50 μg/l
0.5-50 μg/l
0.5-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 0.5-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 0.5-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 0.5-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 1-50 µg/l 0.5-50 µg/l 0.5-50 µg/l 0.5-50 µg/l Waters for Potable and Domestic Purposes | | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 4-50 μg/l
0.5-50 μg/l
0.5-50μg/l | Bore waters
Other waters
(surface waters)
Waters for Potable | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection | | Volatile Organic
compounds (VOC)
including
Trihalomethanes (THM)
1,2,4-trimethylbenzene | |---| | Volatile Organic
compounds (VOC)
including
Trihalomethanes (THM)
1,2-dibromoethane
(EDB) | | Volatile Organic
compounds (VOC)
including
Trihalomethanes (THM)
1,2-dichlorobenzene | | Volatile Organic
compounds (VOC)
including
Trihalomethanes (THM)
1,2-dichloroethane | | Volatile Organic
compounds (VOC)
including
Trihalomethanes (THM)
1,2-dichloropropane | | Volatile Organic
compounds (VOC)
including
Trihalomethanes (THM)
1,3,5 trimethylbenzene
(mesitylene) | | Volatile Organic
compounds (VOC)
including | | | and Domestic
Purposes | | Documented in-house procedure CLS 183 | |---|--|-------|--| | 4-50 μg/l
2-50 μg/l
2-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 4-50 μg/l
0.1-50 μg/l
0.1-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 4-50 μg/l
0.5-50 μg/l
0.5-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 0.2-50 μg/l
0.5-50 μg/l
0.1-50 μg/l | Bore waters Other Waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 1-50 μg/l
0.5-50 μg/l
0.5-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 4-50 μg/l
2-50 μg/l
2-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 0.5-50 μg/l | Bore waters
Other waters
(surface waters) | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to | | Trihalomethanes (THM) 1,3-butadiene | |---| | Volatile Organic
compounds (VOC)
including
Trihalomethanes (THM)
1,3-dichloropropane | | Volatile Organic
compounds (VOC)
including
Trihalomethanes (THM)
1-chlorobutane (n-butyl
chloride) | | Volatile Organic
compounds (VOC)
including
Trihalomethanes (THM)
benzene | | Volatile Organic
compounds (VOC)
including
Trihalomethanes (THM)
bromobenzene | | Volatile Organic
compounds (VOC)
including
Trihalomethanes (THM)
bromochloromethane | | Volatile Organic
compounds (VOC)
including
Trihalomethanes (THM)
bromodichloromethane | | | Waters for Potable and Domestic Purposes | | Headspace injection
Documented in-house
procedure CLS 183 | |---|---|-------|--| | 1-50 μg/l
0.5-50 μg/l
0.1-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 0.5-50 μg/l | Bore waters Other waters (surface waters)) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 2-50 μg/l
0.1-50 μg/l
0.1-50 μg/l | Bore waters Other waters (surface waters) Waters for
Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 2-50 μg/l
1-50 μg/l
1-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 0.2-50 μg/l
2-50 μg/l
0.5-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 0.2-50 μg/l
2-50 μg/l
0.5-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | Volatile Organic
compounds (VOC)
including
Trihalomethanes (THM)
Bromomethane (methyl
bromide) | |--| | Volatile Organic
compounds (VOC)
including
Trihalomethanes (THM)
Carbon disulfide | | Volatile Organic
compounds (VOC)
including
Trihalomethanes (THM)
Carbontetrachloride
(tetrachloromethane) | | Volatile Organic
compounds (VOC)
including
Trihalomethanes (THM)
Cis-1,2-dichloroethene | | Volatile Organic
compounds (VOC)
including
Trihalomethanes (THM)
Cis-1,3-dichloropropene | | Volatile Organic
compounds (VOC)
including | | 2-50 μg/l
0.5-50 μg/l
0.5-50 μg/l | Bore Waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | |---|--|-------|--| | 2-50 μg/l
0.5-50 μg/l
0.5-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 2-50 μg/l
0.5-50 μg/l
0.5-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 0.5-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 2-50 μg/l
0.5-50 μg/l
0.5-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 0.5-50 μg/l
1-50 μg/l | Bore waters
Waters for Potable
and Domestic
Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 2-50 μg/l | Bore Waters | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection | | Trihalomethanes (THM) dibromethane | | |---|---| | Volatile Organic
compounds (VOC)
including
Trihalomethanes (THM) | | | dibromochloromethane | | | Volatile Organic compounds (VOC) | _ | | including
Trihalomethanes (THM)
Dichlorodifluoromethane
(CFC-12) | • | | Volatile Organic
compounds (VOC)
including | | | Trihalomethanes (THM)
Diethyl ether (ether
ether) | | | Volatile Organic compounds (VOC) including | | | Trihalomethanes (THM)
Diisopropyl ether (DIPE) | | | Volatile Organic compounds (VOC) | _ | | including
Trihalomethanes (THM)
ethylbenzene | | | Volatile Organic compounds (VOC) including | | | Trihalomethanes (THM) hexachlorobutadiene | | | Volatile Organic
compounds (VOC)
including | | | | | | Documented in-house procedure CLS 183 | |---|--|-------|--| | 2-50 μg/l
0.5-50 μg/l
0.1-50 μg/l | Bore Waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 1-50 μg/l
0.5-50 μg/l
0.5-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 2-50 μg/l
1-50 μg/l
1-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 2-50 μg/l
0.5-50 μg/l
0.5-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 0.5-50 μg/l
2-50 μg/l
2-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 2-50 μg/l
0.5-50 μg/l
0.5-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 0.5-50 μg/l | Bore waters
Other waters
(surface waters) | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to | | Trihalomethanes (THM) hexachloroethane | |--| | Volatile Organic
compounds (VOC)
including
Trihalomethanes (THM)
lodomethane (methyl
iodide) | | Volatile Organic
compounds (VOC)
including
Trihalomethanes (THM)
m/p-xylene | | Volatile Organic
compounds (VOC)
including
Trihalomethanes (THM)
Methyl acetate | | Volatile Organic
compounds (VOC)
including
Trihalomethanes (THM)
Methyl tert-butyl ether
(MTBE) | | Volatile Organic
compounds (VOC)
including
Trihalomethanes (THM)
naphthalene | | Volatile Organic
compounds (VOC)
including
Trihalomethanes (THM)
n-butylbenzene | | | Waters for Potable and Domestic Purposes | | Headspace injection
Documented in-house
procedure CLS 183 | |---|---|-------|--| | 4-50 μg/l
0.1-50 μg/l
0.1-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 4-60 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 5-50 μg/l | Waters for Potable
and Domestic
Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 2-50 μg/l | Bore waters
Other waters
(surface waters)
Waters for Potable
and Domestic
Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 4-50 μg/l
1-50 μg/l
1-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 4-50 μg/l
2-50 μg/l
2-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | Volatile Organic
compounds (VOC)
including
Trihalomethanes (THM)
n-propylbenzene | |---| | Volatile Organic
compounds (VOC)
including
Trihalomethanes (THM)
o-xylene | | Volatile Organic
compounds (VOC)
including
Trihalomethanes (THM)
pentachloroethane | | Volatile Organic
compounds (VOC)
including
Trihalomethanes (THM)
styrene | | Volatile Organic
compounds (VOC)
including
Trihalomethanes (THM)
Tert-amyl ether ether
(TAEE) | | Volatile Organic
compounds (VOC)
including
Trihalomethanes (THM)
Tert-amyl methyl ether
(TAME) | | Volatile Organic
compounds (VOC)
including
Trihalomethanes (THM)
tetrachloroethene | | 4-50 μg/l
1-50 μg/l
1-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS |
Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | |---|--|-------|--| | 2-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 4-50 μg/l
2-50 μg/l
0.5-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 2-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 1-50 μg/l
5-50 μg/l
5-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 0.2-50 μg/l
1-50 μg/l
1-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 0.5-50 μg/l
0.1-50 μg/l
0.1-50 μg/l | Bore waters
Other waters
(surface waters)
Waters for Potable | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection | | Volatile Organic
compounds (VOC)
including
Trihalomethanes (THM)
Tetrahydrofuran | |---| | Volatile Organic
compounds (VOC)
including
Trihalomethanes (THM)
toluene | | Volatile Organic
compounds (VOC)
including
Trihalomethanes (THM)
Trans-1,3-
dichloropropene | | Volatile Organic
compounds (VOC)
including
Trihalomethanes (THM)
trichloroethene | | Volatile Organic
compounds (VOC)
including
Trihalomethanes (THM)
Trichlorofluoromethane
(CFC-11) | | Volatile Organic
compounds (VOC)
including
Trihalomethanes (THM)
Trichloromethane
(Bromoform) | | Volatile Organic
compounds (VOC)
including | | | and Domestic
Purposes | | Documented in-house procedure CLS 183 | |---|--|-------|--| | 2-50 μg/l
5-50 μg/l
5-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 2-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 1-50 μg/l | Waters for Potable
and Domestic
Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 2-50 μg/l
0.1-50 μg/l
0.1-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 1-50 μg/l
0.5-50 μg/l
0.5-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 2-50 μg/l
0.5-50 μg/l
0.1-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 2-50 μg/l
1-50 μg/l
1-50 μg/l | Bore waters
Other waters
(surface waters) | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to | | | Trihalomethanes (THM)
Trichloromethane
(chloroform) | |---|--| | | Volatile Organic
compounds (VOC)
including
Trihalomethanes (THM)
Vinyl chloride | | | Volatile Organic compounds (VOC) including Trihalomethanes (THM)4-isopropyltoluene (p-cymene) | | | Volatile Organic
compounds (VOC)
including
Trihalomethanes
(THM)Ethyl tert-butyl
ether (ETBE) | | | Volatile Organic
compounds (VOC)
including
Trihalomethanes
(THM)Tert-
butylbenzene | | | Volatile Organic
compounds (VOC)
including
Trihalomethanes
(THM)Trans-1,2-
dichloroethene | | 766 Environmental testing
(inc waters)05 Inorganic | Alkalininty | | | Waters for Potable
and Domestic
Purposes | | Headspace injection
Documented in-house
procedure CLS 183 | |---|--|---------------------------------|--| | 0.5-50 μg/l
0.1-50 μg/l
0.1-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 1-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 1-50 μg/l
0.5-50 μg/l
0.5-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 4-50 μg/l
1-50 μg/l
1-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 0.5-50 μg/l | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | GC/MS | Based on USEPA
524.3 adapted from
Purge and Trap to
Headspace injection
Documented in-house
procedure CLS 183 | | 10-500 mg/l as
CaCO₃ | Bore Waters Other waters (surface waters) Waters for potable and domestic purposes | Mettler Toledo DL50
Titrator | Standard Methods
examination of water
and waste water 24th
edition, 2023.
Documented in-house
method CLS 195 | | Ammonia | |----------------------------| | | | Ammonia as NH ₄ | | | | | | | | Bicarbonate by calculation | | | | Carbonate by calculation | | Chloride | | | | | | | | 0.005 to 600 mg/L
NH ₃ -N | Bore waters Other waters (surface waters) Saline waters Sewage Trade Wastes Waste water treatment plants effluents (WWTP) Waters for Potable and Domestic Purposes | Konelab | Konelab CLS 40 Salicylate method based on Methods for the examination of water and associated Materials, Ammonia in waters,1981 | |---|--|---------------------------------|---| | 0.01 - 1290 mg/L
NH₄ | Bore waters Other waters (surface waters) Saline waters Sewage Trade Wastes Waste water treatment plants effluents (WWTP) Waters for Potable and Domestic Purposes | Konelab | Konelab CLS 40
Salicylate method
based on Methods for
the examination of
water and associated
Materials, Ammonia in
waters,1981 | | 10-500 mg/l as
CaCO₃ | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | Mettler Toledo DL50
Titrator | Standard Methods
examination of water
and waste water 24th
edition, 2023.
Documented in-house
method CLS 195 | | 10-500 mg/l as
CaCO₃ | Bore waters Other waters (surface waters) Waters for Potable and Domestic Purposes | Mettler Toledo DL50
Titrator | Standard Methods
examination of water
and waste water 24th
edition, 2023.
Documented in-house
method CLS 195 | | 2.0 to 30,000 mg/L
CI | Bore waters Other waters (surface waters) Saline waters Sewage Trade Wastes | Konelab | Konelab CLS 36 Colorimetric determination and adapted for discrete analyser Standard Methods 24th edition | | | | | Waste water
treatment plants
effluents (WWTP)
Waters for Potable
and Domestic
Purposes | | 2023 (APHA 4500-CL
E) | |-----------------------------|----------|--------------------------|--|-------------------
--| | Colour | | 4.0 - 500 mg/l(PT
Co) | Bore waters Other waters (surface waters) Saline waters Sewage Trade Wastes Waste water treatment plants effluents (WWTP) Waters for Potable and Domestic Purposes | DR5000 | In house method CLS
29 Based on Standard
methods for
examination of water
and waste water 24th
edition, 2023 (APHA
2120 C) | | Dissolved Organic
Carbon | DOC | 1-100 mg/l | Other Water
(Surface Waters)
Waters for Potable
and Domestic
Purposes | TOC Analyser | CLS 150 Total Organic
Carbon (NPOC) and
Dissolved Organic
Carbon (DOC) USEPA
Method 415.3 | | Fats, oils and greases | | 5 to 10,000 mg/L | Bore waters Other waters (surface waters) Saline waters Sewage Trade Wastes Waste water treatment plants effluents (WWTP) Waters for Potable and Domestic Purposes | Soxhlet extractor | CLS 25 Increase in
weight after sample
filtration and Soxhlet
extraction Standard
Methods for the
Examination of Water
and Wastewater 24th
edition, 2023 (APHA
5520 A and D) | | Fluoride | Fluoride | 0.2 - 1.5 mg/l | Bore waters Other waters (surface waters) Sewage Trade Wastes Waste water treatment plants | Konelab | Standard Methods for
Examination of Water
and Waste water 24th
ed. 2023. CLS 213 | | Nitrate | 0.1 - 500 mg/L NO ₃ -
N | effluents (WWTP) Waters for Potable and Domestic Purposes Bore waters Other waters (surface waters) Saline waters Sewage Trade Wastes Waste water treatment plants effluents (WWTP) Waters for Potable | Konelab | Konelab CLS 39
Calculated value | |----------------------------|--|--|---------|--| | Nitrite | 0.005 to 10 mg/L
NO ₂ -N | and Domestic Purposes Bore waters Other waters (surface waters Saline waters Sewage Trade Wastes Waste water treatment plants effluents (WWTP) Waters for Potable and Domestic Purposes | Konelab | Konelab CLS 37 Colorimetric determination and adapted for discrete analyser, Standard Methods for the Examination of Water and Wastewater 24th edition, 2023 (APHA 4500-NO ₂ B) | | Nitrite as NO ₂ | 0.017 - 33 mg/L | Bore waters Other waters (surface waters) Saline waters Sewage Trade Wastes Waste water treatment plants effluents (WWTP) Waters for Potable and Domestic Purposes | Konelab | Konelab CLS 37 Colorimetric determination and adapted for discrete analyser, Standard Methods for the Examination of Water and Wastewater 24th edition, 2023 (APHA 4500-NO ₂ B) | | Orthophosphate | |----------------| | | | | | | | | | | | Phosphorus | | Filospilorus | | | | | | | | | | | | Sulphate | | | | | | | | | | | | TON | | 1011 | | | | | | | | 0.03 to 6,140 mg/L
PO ₄ | Bore waters Other waters (surface waters) Saline waters Sewage Trade Wastes Waste water treatment plants effluents (WWTP) Waters for Potable and Domestic Purposes | Konelab | Konelab CLS 35 Colorimetric determination and adapted for discrete analyser, Standard Methods for the Examination of Water and Wastewater 24th edition, 2023 (APHA 4500-PE) | |---------------------------------------|--|---------|---| | 0.01 to 2,000 mg/L
PO₄-P | Bore waters Other waters (surface waters) Saline waters Sewage Trade Wastes Waste water treatment plants effluents (WWTP) Waters for Potable and Domestic Purposes | Konelab | Konelab CLS 35 Colorimetric determination and adapted for discrete analyser, Standard Methods for the Examination of Water and Wastewater 24th edition, 2023 (APHA 4500-PE) | | 5-3,000 mg/L SO ₄ | Bore waters Other waters (surface waters) Saline waters Sewage Trade Wastes Waste water treatment plants effluents (WWTP) Waters for Potable and Domestic Purposes | Konelab | Konelab CLS 88 Based on Sulphate in waters Effluents and Soils 2nd Edition (1998) Method E. | | 0.1 - 500 mg/L NO ₃ -N | Bore waters Other waters (surface waters) Saline waters Sewage Trade Wastes Waste water | Konelab | Konelab CLS 38 Colorimetric determination and adapted for discrete analyser, Standard Methods for the Examination of Water | | | | | | 1 | |--------------------------------|------------------------|--|-------------------------------|--| | | | treatment plants
effluents (WWTP)
Waters for Potable
and Domestic
Purposes | | and Wastewater 24th edition, 2023 (APHA 4500-NO ₃ -H) | | Total Hardness | 20-3,000 mg/L
CaCO₃ | Bore waters Other waters (surface waters) Saline waters Sewage Trade Wastes Waste water treatment plants effluents (WWTP) Waters for Potable and Domestic Purposes | | Konelab CLS 77 Std
Methods 22nd Ed
2012, Colorimetric
determination and
adapted for discrete
analyser, Standard
Methods for the
Examination of Water
and Wastewater 24th
edition, 2023 (APHA -
2340 C) | | Total Nitrogen | 0.5 - 1000 mg/L | Bore waters Other waters (surface waters) Saline waters Sewage Trade Wastes Waste water treatment plants effluents (WWTP) Waters for Potable and Domestic Purposes | | CLS 152 based on
ASTM D5176-08
(reapproved 2015) For
total chemically bound
nitrogen in water by
pyrolysis and
chemiluminescence
detection | | Total Organic Carbon
(NPOC) | 1 - 1000 mg/L | Bore waters Other waters (surface waters) Saline waters Sewage Trade Wastes Waste water treatment plants effluents (WWTP) Waters for Potable and Domestic Purposes | TOC-V CPN/CPN TOC
analyser | CLS 150 Based on
USEPA 415.3 and
Shimadzu User
Manual for TOC V-
CPH/CPN | | | Total Phosphorus | |--|----------------------| | | | | | Turbidity | | | | | 767 Physical
test/measurement01 pH | pН | | | | | 767 Physical test/measurement02 Conductivity | Conductivity at 20°C | | 0.05 - 1000 mg/L
PO ₄ -P | Bore waters Other waters (surface waters) Saline waters Sewage Trade Wastes Waste water treatment plants effluents (WWTP) Waters for Potable and Domestic Purposes | Macherey-Nagel
Spectrophotometer | CLS 151 Based on
ISO 6878-2004 D11
(Macherey Nagel) | |--|--|-------------------------------------|--| | 0.2 - 4000 NTU | Bore waters Other waters (surface waters) Saline waters Sewage Trade Wastes Waste water treatment plants effluents (WWTP) Waters for Potable and Domestic Purposes | HACH 2100N
Turbidimeter. | In house method CLS
30 Standard Methods
for the Examination of
Water and Wastewater
24th edition, 2023
(APHA 2130 B) | | 4-10 | Bore waters Other waters (surface waters) Saline waters Sewage Trade Wastes Waste water treatment plants effluents (WWTP) Waters for Potable and Domestic Purposes | Ph Probe | CLS 26 Measurement
of electromotive force
by electrode to
determine Hydrogen
ion concentration,
Standard Methods for
the Examination of
Water and Wastewater
24th edition, 2017
(APHA 4500 - H+B) | | 5 - 12,730 μS/cm | Bore waters Other waters (surface waters) Saline waters Sewage Trade Wastes Waste water | Conductivity Meter | CLS 67 method based
on Standard methods
for the examination of
water and wastewater
24th edition, 2023
(APHA-2510 B) | | | | | treatment plants
effluents (WWTP)
Waters for Potable
and Domestic
Purposes | | | |--|--|------------------|--|-----------------------------------|---| | 767 Physical
test/measurement03
Suspended Solids | Suspended Solids | 2 to 15,000 mg/L | Bore waters Other waters (surface waters) Saline waters Sewage Trade Wastes Waste water treatment plants effluents (WWTP) Waters for Potable and Domestic Purposes | '' | CLS 13 Based on
Standard Methods for
the Examination of
Water and Wastewater
24th edition, 2023 .
Increase in sample
filter Dried at 103 -
105°C. (APHA 2540
D) | | 798 Sampling | Water Sampling of
Lakes, Rivers and
Lagoons (with
subsequent analysis by
ISO
accredited
laboratory) | | Other waters
(surface waters) | Grab, Rod, Bucket and
Van Dorn | CLS WI 135 Based on ISO 5667-4:2016 and ISO 5667-6:2014 | ## **Rosmuc Site**, Conemarra Co Galway ## **Chemical Testing** ## Category: A | Chemistry Field - Tests | Test name | Analyte | Range of measurement | Matrix | Equipment/technique | Standard reference/SOP | |--|--------------|--|--|--|---------------------|------------------------| | 766 Environmental testing (inc waters)04 Organic | VOC by GCMSD | Chloroform
Bromodichloromethane
Dibromochloromethane | 0.5 - 200 ug/l
0.5 - 200 ug/l
2 - 200 ug/l
2 - 200 ug/l | Surface Water
Surface Water
Surface Water
Surface Water
Ground Water
Ground Water
Ground Water
Ground Water
Drinking Water | GCMSD | CLS 183/USEPA
524.3 |