Schedule of Accreditation Organisation Name Southern Scientific Services Limited Trading As INAB Reg No 194T Contact Name Conor Murphy Address Unit 4, 4Park Business Centre, Farranfore, Kerry Contact Phone No 0669763588 Email quality@southernscientificireland.com Website http://www.southernscientificireland.com Accreditation Standard EN ISO/IEC 17025 T Standard Version 2017 Date of award of accreditation 22/04/2008 Scope Classification Biological and veterinary testing Scope Classification Chemical testing Services available to the public¹ ¹ Refer to document on interpreting INAB Scopes of Accreditation | Sites from which accredited services are delivered | | | | | | | | |--|--------------------|---|--|--|--|--|--| | (the detail of the accredited services delivered at each site are on the Scope of Accreditation) | | | | | | | | | I | Name | Address | | | | | | | 1 | Dunrine Laboratory | Dunrine , Killarney, Kerry, Ireland, V93 X860 | | | | | | | 2 | Head Office | Unit 4, 4Park Business Centre, , Farranfore, Kerry, Ireland | | | | | | # Scope of Accreditation #### **Dunrine Laboratory** **Biological and Veterinary Testing** Category: A | Biology/veterinary field -
Tests | Test name | Technique | Matrix | Equipment | Std. reference | |--|---|-------------------------|---|------------------------------------|--| | 803 Culture of organisms in liquid or agar based culture media with visual or instrument monitoring for growth01 Culture of bacteria | Enumeration of Clostridium perfringens | Membrane Filtration | Waters - potable waters | | ISO 14189:2013 / SMP
069 | | | Enumeration of coliforms and E. coli by the colilert method | Colilert | Waters - potable waters,
Swimming pools and
spas, Environmental
water, Waste water
treatment plant effluent
(WWTP effluent), Other
waters - Marine waters -
Waste Waters - Effluents | colilert vessels; quanti-
trays | ISO 9308-2:2012, AFNOR IDX 33/01-11/19, SMP 019 | | | Enumeration of E. coli by the Multiple Tube Method | Multiple Tube Technique | Fish, Shellfish and molluscs | | ISO/TS 16649-3:2015,
SMP 018 | | | Enumeration of
Enterococci by Enterolert
method | Enterolert / MPN | Wastewater treatment plant effluent (WWTP effluent), Wastewater, effluent, surface water, ground water, recreational waters incl. saline water | | Enterolert-E protocol /
SMP 068, AFNOR IDX
33/04-02/15 | | | Enumeration of
Enterococci by the
Enterolert method | Enterolert DW / MPN | · | colilert vessels; quanti- | Idexx Enterolert protocol,
AFNOR IDX 33/03-10/13,
SMP 068 | |--|---|---------------------|--------------------------------------|-----------------------------------|---| | | Enumeration of Faecal coliforms | Colilert-18 / MPN | | Colilert vessels;
quanti-trays | Idexx Colilert-18 protocol /
SMP 124 | | | Enumeration of TVC in waters- colony count technique | Colony Count | Waters - potable and domestic waters | N/A | ISO 6222:1999 / SMP 061 | ### **Head Office** ### **Chemical Testing** #### Category: A | Chemistry Field - Tests | Test name | Analyte | Range of measurement | Matrix | Equipment/technique | Standard reference/SOP | |--|--|--|----------------------|--|-----------------------------------|---| | 766 Environmental testing (inc waters) | Determination of Sum
benzo b & k fluoranthene in
water | Sum benzo b & k
fluoranthene | 0.005 - 0.2 μg/l | Potable, Ground
water, Surface
water, Waste
Water, WWTP
Effluents | GC-MSMS | USEPA method 8270
E / SCP060 (b) | | | Determination of BTEX in
Soil | Benzene
Toluene
Ethylbenzene
O-Xylene
M&P Xylene | 20 - 1000 μg/kg | Mineral/Loam &
Clay | Headspace GC-MS | ISO 22155 second
edition 2011 / SCP
114 b | | | Determination of Diesel
Range Organics | C10 -C28 | 10 -10,000 μg/l | Potable, Ground water, surface water | GC-FID | USEPA 8015 D /SCP
115a | | | Determination of Dissolved
Organic Carbon (DOC) | Dissolved Organic
Carbon | 0.5-10,000 mg/L | Waters for potable and domestic purposes WWTP effluents Other waters - Ground waters - Surface waters - Landfill Leachates | Elemental Analyzer,
Combustion | APHA, 5310-B,
23Ed., (2017), EN
1484 / SCP 065(b) | | | Determination of PAH's in
Soil | Naphthalene Acenaphtylene Acenaphthene Phenanthrene Anthracene Fluorene Benzo(a)anthracene Chrysene Fluoranthene | 0.03 - 250 mg/kg | Mineral/Loam &
Clay | GC-MS | USEPA 8270 E /SCP
060(a) | | | Pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3,- cd)pyrene Benzo(g,h,i)perylene Dibenz(a,h)anthracene | | | | | |---|---|--|---|---------|--------------------------------------| | Determination of PAH's in water | Acenaphtylene Naphthalene Acenaphthene Phenanthrene Anthracene Fluorene Benzo(a)anthracene Chrysene Fluoranthene Pyrene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3,- cd)pyrene Benzo(g,h,i)perylene Dibenz(a,h)anthracene | 0.005 - 0.2 µg/L
0.005 µg/L | Potable, Ground
water, Surface
water,
Waste water,
Effluents | GC-MSMS | USEPA Method 8270
E/ SCP 060(b) | | Determination of Pesticides in water | Pendimethalain
Dichlobenil
Dieldrin
Cypermethrin | 0.005 - 0.2 µg/l
0.005 - 0.2 µg/l
0.005 - 0.2 µg/l
0.012 - 0.2 µg/l | Potable, Ground
water, Surface
water, Waste
Water, WWTP
Effluents | GC-MS | US EPA Method
8270 E/ SCP 060 (a) | | Determination of Sum benzo b & k Fluoratnthene | Sum benzo b &k fluoranthene | 0.02 - 250 mg/kg | Mineral/Loam &
Clay | GC-MSMS | USEPA 8270 E /
SCP 060(a) | | Determination of total PAH's in Soil | Total PAH's | 0.32 - 250 mg/kg | Mineral/Loam &
Clay | GC-MSMS | USEPA 8270 E/ SCP
060(b) | | Determination of total
PAH's in water (sum 16)
Determination of total
PAH's in water (sum 4) | | 0.078 -0.2 µg/l
0.02 -0.012 | Potable, Ground
water, Surface
water, Waste
Water, Effluent | GC-MSMS | USEPA method 8720
E/ SCP060 (a) | | Determination of TPH's | C10 - C12
C12 - C16
C16 - C21 | 2 -2000 mg/kg | Mineral/Loam &
Clay | GC-FID | USEPA 8015 D/
SCP115a | | Determination of Volatile (Coloroethane) (VOC's) in water 1.1-Dichloroethene (Irans) 1.2-Dichloroethene (Icis) 1.1-Dichloroethane 2.2-Dichloropropane Bromochloromethane 1.3-Dichloropropane Dibromomethane 1.3-Dichloropropane Dibromomethane 1.3-Dichloropropane 1.3-Dichloropropane Dibromomethane 1.3-Dichloropropane 1.3-Dichloropropane 1.3-Dichloropropane 1.1,1.2-Trichloroethane 1.3-Dichloropropane 1.1,1.2-Trichloroethane 1.3-Dichloropropane 1.1,1.2-Trichloroethane 1.3-Dichloropropane 1.3-Dichloropropane 1.1,1.2-Trichloroethane 1.3-Dichloropropane 1.2-Dibromoethane 1.3-Dichloropropane 1.1,1.2-Tettachloroethane 1.3-Dichloropropane 1.1,1.2-Tettachloroethane 1.1,1.2-Tettachloroethane 1.1,1.2-Tettachloroethane 1.1,1.2-Tettachloroethane 1.2-Dichloropropane 1.1,1.2-Tettachloroethane 1.2-Dichloropropane 1.1,1.2-Tettachloroethane 1.2-Dichloropropane 1.2-Dichloropropane 1.2-Dichloropropane 1.1,1.2-Tettachloroethane 1.2-Dichloroethane 1.2-Dich | T_ | | | | Т | | |--|---|---|---------------|---|-----------------|--| | Determination of Volatile Organic Compounds (VOC's) in water 1-1-Dichloroethene (1,2-Dichloroethene (trans) | | | | | | | | Organic Compounds (VOC's) in water 1,1-Dichloroethene 1,2-Dichloroethene (trans) 1,2-Dichloroethene (cis) 1,1-Dichloroethane 2,2-Dichloropropane Bromochloromethane Carbon Tetrachloride 1,1-Dichloropropane Trichloroethene 1,2-Dichloropropane Dibromomethane 1,3-Dichloropropane (cis) Toluene 1,3-Dichloropropene (trans) 1,1,2-Trichloroethane 1,3-Dichloropropane 1,3-Dichloropropane Chiorobenzne Ethylbenzene 1,1,1,2- Tetrachloroethane 1,1,1,2- Tetrachloroethane 8,8-Xylene 0-Xylene Styrene Styrene Styrene Styrene Bromobenzene 1,1,2-Tetrachloroptopane 1,2,2-Tetrachloroethane 1,2-Zetrachloroethane 1,2-Zetrachloroeth | C28 | 28 - C35 | | | | | | Organic Compounds (VOC's) in water 1,1-Dichloroethene 1,2-Dichloroethene (trans) 1,2-Dichloroethene (cis) 1,1-Dichloroethane 2,2-Dichloropropane Bromochloromethane Carbon Tetrachloride 1,1-Dichloropropane Bromochloromethane Carbon Tetrachloride 1,1-Dichloropropane Dibromomethane 1,2-Dichloropropane Dibromomethane 1,3-Dichloropropane (cis) Toluene 1,3-Dichloropropane (trans) 1,1,2-Trichloroethane 1,3-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 1,1,1,2- Tetrachloroethane 1,3-Dichloropropane 1,1,1,2- Tetrachloroethane M&P-Xylene 0-Xylene Styrene Styrene Styrene Bromobenzene 1,1,2-Tetrachloroethane 1,2-Disnomethane 1,2-Disnomethane 0-Xylene Styrene Styrene Bromobenzene 1,1,2-Tetrachloroethane 1,2-Tetrachloroethane | | | | | | | | 1125- | Determination of Volatile Organic Compounds (VOC's) in water 1,1- 1,2- (cis 1,1- 2,2- Bro Car 1,1- Tric 1,2- Dib 1,3- (cis Tolu 1,3- (tra 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, | nyl chloride hloroethane) I-Dichloroethene 2-Dichloroethene 3-Dichloroethene 2-Dichloroethene 2-Dichloroethane 2-Dichloropropane 3-Dichloropropene 3-Dichloropropane 3-Dichloropropane 3-Dichloropropene 3-Dichloroethane | 0.1 - 50 μg/L | Water, Surface
water, Waste
Water, WWTP | Headspace GC-MS | | | Ŧ | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | | | | | | _ | |---|---------------------------------------|--|---|--|---|-----------------|--| | | | | 4-Chlorotoluene tert-Butylbenzene 1,2,4- Trimethylbenzene sec-Butylbenzene p-Isopropyltoluene (p-Cymene) 1,3-Dichlorobenzene 1,4-Dichlorobenzene n-Butylbenzene 1,2-Dichlorobenzene 1,2-Dibromo-3- chloropropane 1,2,4Trichlorobenzene Hexachlorobutadiene Naphthalene 1,2,3-Trichlorobenzene | | | | | | | | Determination of Volatile
Organic Compounds
(VOC's) in water | 1,2 dichloroethane Tetra chloroethene | | Potable, Ground
water, Surface
Water, Waste
Water, WWTP
Effluents | Headspace GC-MS | US EPA 5021A /
SCP114 a | | | | | Sum of trichloethene & tetrachloethene | 0.2 - 200 μg/L | Potable, Ground
water, Surface
Water | Headspace GC-MS | US EPA 5021A /
SCP114 a | | | | | Total THM's (Calc) | 5 - 800 μg/L | Potable, Ground
water, Surface
Water | Headspace GC-MS | US EPA 5021A /SCP
114 a | | | | Total BTEX | Calculation total BTEX | | Mineral/Loam
&Clay | Headspace GC-MS | ISO 22155 second edition 2011 | | | | Determination of Cu, Zn,
RE Mn in Soil | Easily Extractable Manganese | 0.5-15 mg/L
5-750 mg/l
0.5-15 mg/l | Agricultural products and materials - Soils, Constituents of | ICP-OES | Calculation by
Chemical Analysis of
Agricultural Material, | | | | | | the environment -
Soils | | An Foras Taluntais,
1979 / SSP 038 | |---|--|--|--|--|---------------------|--| | | Determination of Metals by ICP-OES | Aluminium | 10 - 10,000 μg/L | Potable & Domestic Water | ICP-OES | APHA, 3120B 23 Ed.,
(2017) / SCP 053b | | | | Cadmium Chromium Copper Iron Lead Manganese Nickel Zinc | 2-1000 μg/L
1-1000 μg/L
2-1000 μg/L
10-1000 μg/L
2-1000 μg/L
2-1000 μg/L
10-1000 μg/L | Waters for potable and domestic purposes, Other Waters - Ground waters - Surface waters | ICP-OES | APHA, 3120B 23 Ed.,
(2017) / SCP 053b | | | Determination of Metals in
Soil | Antimony Arsenic Barium Cadmium Chromium Cobalt Copper Lead Manganese Molybdenum Nickel Zinc | 0.25-2500 mg/kg dw
0.25-2500 dw | products and
materials - Soils,
Constituents of
the environment -
Soils | ICP-OES | BS 7755 (1995) /
SCP 053b | | 766 Environmental
testing (inc waters)02
Biochemical oxygen
demand | Determination of
Biochemical Oxygen
Demand | BOD | 1-32,000 mg/L O2 | Waters for potable and domestic purposes, Sewage, Saline Waters, Other waters - Ground waters - Surface waters - Waste Waters - Effluents - Landfill Leachates | DO meter | APHA, 5210B, 23Ed.,
(2017) / SCP015 | | 766 Environmental
testing (inc waters)03
Chemical oxygen
demand | Determination of Chemical
Oxygen Demand | COD | 10-30,000 mg/L | Waters for
potable and
domestic
purposes,
Sewage, Trade
Wastes, Saline | HACH / Colorimetric | APHA, 5520D, 23Ed.,
(2017) / SCP 016 | | | | | | Waters, Bore
Waters, Other
waters - Ground
waters - Surface
waters - Effluents
- Leachates | | | |--|---|-----------------------------------|-----------------|---|--------|---| | 766 Environmental testing (inc waters)04 Organic | Determination of Acid
Herbicides by LCMSMS | (2,4 DP) | 0.005 - 50 μg/l | Potable &
Domestic Water
Ground Water
Surface Water,
bore and raw
water | LCMSMS | USEPA 538-1-2009,
USEPA 535 -2005/
SCP 131a | | | | 2, 3, 6-
Trichlorobenzoic Acid | 0.005 - 50 μg/l | Potable &
Domestic Water
Ground Water
Surface Water,
bore and raw
water | LCMSMS | USEPA 538-1-2009,
USEPA 535 -2005/
SCP 131a | | | | 2,4 D | 0.005 - 50 μg/l | Potable &
Domestic Water
Ground Water
Surface Water,
bore and raw
water | LCMSMS | USEPA 538-1-2009,
USEPA 535 -2005/
SCP 131a | | | | 2,4 DB | 0.005 - 50 μg/l | Potable &
Domestic Water
Ground Water
Surface Water,
bore and raw
water | LCMSMS | USEPA 538-1-2009,
USEPA 535 -2005/
SCP 131a | | | | Bentazone | 0.005 - 50 μg/l | Potable & Domestic Water Ground Water Surface Water, bore and raw water | LCMSMS | USEPA 538-1-2009,
USEPA 535 -2005/
SCP 131a | | | | Boscalid | 0.005 - 50 μg/l | Potable &
Domestic Water
Ground Water
Surface Water, | LCMSMS | USEPA 538-1-2009,
USEPA 535 -2005/
SCP 131a | | | | bore and raw water | | | |-------------------|-----------------|---|--------|---| | Clopyralid | 0.005 - 50 μg/l | Potable & Domestic Water Ground Water Surface Water, bore and raw water | LCMSMS | USEPA 538-1-2009,
USEPA 535 -2005/
SCP 131a | | Dicamba | 0.005 - 50 μg/l | Potable & Domestic Water Ground Water Surface Water, bore and raw water | LCMSMS | USEPA 538-1-2009,
USEPA 535 -2005/
SCP 131a | | Dichlorprop | 0.005 - 50 μg/l | Potable & Domestic Water Ground Water Surface Water, bore and raw water | LCMSMS | USEPA 538-1-2009,
USEPA 535 -2005/
SCP 131a | | Fluoroxypr | 0.005 - 50 μg/l | Potable & Domestic Water Ground Water Surface Water, bore and raw water | LCMSMS | USEPA 538-1-2009,
USEPA 535 -2005/
SCP 131a | | МСРА | 0.005 - 50 μg/l | Potable & Domestic Water Ground Water Surface Water, bore and raw water | LCMSMS | USEPA 538-1-2009,
USEPA 535 -2005/
SCP 131a | | MCPP (Mecoprop) | 0.005 - 50 μg/l | Potable & Domestic Water Ground Water Surface Water, bore and raw water | LCMSMS | USEPA 538-1-2009,
USEPA 535 -2005/
SCP 131a | | Pentachlorophenol | 0.005 - 50 μg/l | Potable &
Domestic Water
Ground Water | LCMSMS | USEPA 538-1-2009,
USEPA 535 -2005/
SCP 131a | | | | | Surface Water,
bore and raw
water | | | |--|---------------------|------------------|--|--------------------------|--| | | Picloram | 0.005 - 50 μg/l | Potable & Domestic Water Ground Water Surface Water, bore and raw water | LCMSMS | USEPA 538-1-2009,
USEPA 535 -2005/
SCP 131a | | | Triclopyr | 0.005 - 50 μg/l | Potable & Domestic Water Ground Water Surface Water, bore and raw water | LCMSMS | USEPA 538-1-2009,
USEPA 535 -2005/
SCP 131a | | Determination of Acrylamide by LCMSMS | Acrylamide | 0.005 - 0.5 μg/l | Potable &
Domestic Water,
Surface Water,
Ground Water,
bore and raw
water | LCMSMS | US EPA 536 & 557,
LCMSMS /SCP 131d | | Determination of Dustfall | Dust | N/A | Constituents of
the environment -
Atmospheric dust
fall | Bergerhoff Dust
Gauge | VDI 4320 Part 2,
Measurement of
Atmospheric Dust
Depositions / SCP
039 | | Determination of Glyphosate by LCMSMS | Glyphosate | 0.005 - 50 μg/l | Potable &
Domestic Water
Ground Water
Surface Water,
bore and raw
water | LCMSMS | USEPA 538-1-2009,
USEPA 536 -2007
/SCP 131b | | Determination of Halo
Haloacetic Acids by
LCMSMS | Dibromoacetic Acid | 0.005 - 0.5 μg/l | Potable & Domestic Water, Surface Water, Ground Water, bore and raw water | LCMSMS | US EPA 536 & 557,
LCMSMS /SCP 131d | | | Dichloroacetic Acid | 0.005 - 0.5 μg/l | Potable &
Domestic Water,
Surface Water, | LCMSMS | US EPA 536 & 557,
LCMSMS /SCP 131d | | • | | | | | | |--|-----------------------------------|------------------|--|-----------------|---------------------------------------| | | | | Ground Water,
bore and raw
water | | | | | Monobromoacetic Acid | 0.005 - 0.5 μg/l | Potable & Domestic Water, Surface Water, Ground Water, bore and raw water | LCMSMS | US EPA 536 & 557,
LCMSMS /SCP 131d | | | Monochloroacetic Acid | 0.005 - 0.5 μg/l | Potable &
Domestic Water,
Surface Water,
Ground Water,
bore and raw
water | LCMSMS | US EPA 536 & 557,
LCMSMS /SCP 131d | | | Total Haloacetic Acids (sum of 5) | 0.005 - 0.5 μg/l | Potable &
Domestic Water,
Surface Water,
Ground Water,
bore and raw
water | LCMSMS | US EPA 536 & 557,
LCMSMS /SCP 131d | | | Trichloroacetic Acid | 0.005 - 0.5 μg/l | Potable &
Domestic Water,
Surface Water,
Ground Water,
bore and raw
water | LCMSMS | US EPA 536 & 557,
LCMSMS /SCP 131d | | Determination of
Microcystine-LR by
LCMSMS | Microcystine-LR | 0.02 - 0.5 μg/l | Potable &
Domestic Water,
Surface Water,
Ground Water,
bore and raw
water | LCMSMS | ISO 22104:2021,
LCMSMS /SCP 131e | | Determination of Organic
Matter | Organic Matter | 0.1-99.9 % | Agricultural products and materials - Soils, Constituents of the environment - Soils | Gravimetrically | BS 7755 (1995) /
SSP 012 | | Determination of Pesticides by LCMSMS | Isoproturon | 0.005 - 50 μg/l | Potable & Domestic Water Ground Water Surface Water, bore and raw water | LCMSMS | USEPA 538-1-2009,
USEPA 536 -
2007/SCP 131c | |---------------------------------------|-----------------|-----------------|--|--------|---| | | Atrazine | 0.005 - 50 μg/l | Potable &
Domestic Water
Ground Water
Surface Water,
bore and raw
water | LCMSMS | USEPA 538-1-2009,
USEPA 536 -
2007/SCP 131c | | | Chlorfenvinphos | 0.005 - 50 μg/l | Potable &
Domestic Water
Ground Water
Surface Water,
bore and raw
water | LCMSMS | USEPA 538-1-2009,
USEPA 536 -
2007/SCP 131c | | | Chlorotoluron | 0.005 - 50 μg/l | Potable &
Domestic Water
Ground Water
Surface Water,
bore and raw
water | LCMSMS | USEPA 538-1-2009,
USEPA 536 -
2007/SCP 131c | | | Chlorpropham | 0.005 - 50 μg/l | Potable &
Domestic Water
Ground Water
Surface Water,
bore and raw
water | LCMSMS | USEPA 538-1-2009,
USEPA 536 -
2007/SCP 131c | | | Diazinon | 0.005 - 50 μg/l | Potable &
Domestic Water
Ground Water
Surface Water,
bore and raw
water | LCMSMS | USEPA 538-1-2009,
USEPA 536 -
2007/SCP 131c | | | Diflufenican | 0.005 - 50 μg/l | Potable &
Domestic Water
Ground Water
Surface Water, | LCMSMS | USEPA 538-1-2009,
USEPA 536 -
2007/SCP 131c | | | | bore and raw water | | | |---------------|-----------------|--|--------|---| | Diuron | 0.005 - 50 μg/l | Potable & Domestic Water Ground Water Surface Water, bore and raw water | LCMSMS | USEPA 538-1-2009,
USEPA 536 -
2007/SCP 131c | | Epoxiconazole | 0.005 - 50 μg/l | Potable & Domestic Water Ground Water Surface Water, bore and raw water | LCMSMS | USEPA 538-1-2009,
USEPA 536 -
2007/SCP 131c | | Linuron | 0.005 - 50 μg/l | Potable & Domestic Water Ground Water Surface Water, bore and raw water | LCMSMS | USEPA 538-1-2009,
USEPA 536 -
2007/SCP 131c | | Metaldehyde | 0.005 - 50 μg/l | Potable & Domestic Water Ground Water Surface Water, bore and raw water | LCMSMS | USEPA 538-1-2009,
USEPA 536 -
2007/SCP 131c | | Metazachlor | 0.005 - 50 μg/l | Potable &
Domestic Water
Ground Water
Surface Water,
bore and raw
water | LCMSMS | USEPA 538-1-2009,
USEPA 536 -
2007/SCP 131c | | Propzamide | 0.005 - 50 μg/l | Potable &
Domestic Water
Ground Water
Surface Water,
bore and raw
water | LCMSMS | USEPA 538-1-2009,
USEPA 536 -
2007/SCP 131c | | Simazine | 0.005 - 50 μg/l | Potable &
Domestic Water
Ground Water | LCMSMS | USEPA 538-1-2009,
USEPA 536 -
2007/SCP 131c | | | | | | Surface Water,
bore and raw
water | | | |--|--|------------------------------|--------------------|--|---|--| | | Determination of Total
Organic Carbon (TOC) | Total Organic Carbon | 0.5-10,000 mg/L | Waters for
potable and
domestic
purposes, WWTP
effluents, Other
waters - Ground
waters - Surface
waters - Landfill
Leachates | Elemental Analyzer,
Combustion | APHA, 5310-B,
23Ed., (2017), EN
1484 / SCP 065(b) | | | Determination of Total
Pesticides in water (sum of
33) | Total Pesticides (Sum of 33) | 0.012 – 660.0 μg/L | Potable &
Domestic Water
Ground Water
Surface Water,
bore and raw
water | Calculation | USEPA 538-1-2009,
USEPA 535 -2005,
US EPA Method
8270 E/ SCP 131f | | | Determination of Total
Petroleum Hydrocarbon in
water | C10-C40 | 10 - 50,000 μg/l | Potable, Ground
water, Surface
Water, Waste
Water, WWTP
Effluents | GC-FID | USEPA 8015 D /
SCP115 a | | | Determination of Turbidity | Turbidity | 0.2-20 NTU | Waters for potable and domestic purposes, Other Waters - Ground waters - Surface waters | Nephelometry | APHA, 2130B, 22
Ed., (2012) / SCP
058 | | 766 Environmental
testing (inc waters)05
Inorganic | Determination of Alkalinity | Alkalinity | 5-800 mg/L CaCO3 | Waters for potable and domestic purposes, WWTP Effluents, Saline waters, Other waters - Ground waters, Surface waters, Landfill Leachates | Spectrophotometry by
Aquakem 250
Autoanalyser | HMSO, SCA, Method
C. / SCP 027h | | Determination of Ammonia | Ammonia | 0.02-12 mg/L N
(0.03-15.4 mg/L
NH4) | Waters for potable and domestic purposes, WWTP effluents, Other waters - Ground waters - Surface waters - Landfill Leachates | Spectrophotometry by
Aquakem 250
Autoanalyser | APHA, 4500NH3-G,
23Ed., (2017) / SCP
027a | |---|---|---|--|---|--| | Determination of Ca, Mg,
Na, K by ICP-OES 700
series | Calcium
Magnesium
Potassium
Sodium | 1-250 mg/L
0.2-50 mg/l
1-100 mg/l
1-250 mg/l | Waters for
potable and
domestic
purposes, Other
Waters - Ground
waters - Surface
waters | ICP-OES | APHA, 3120B 23 Ed.,
(2017) / SCP 053a | | Determination of Chlorate by IC | Chlorate | 0.03 - 0.8 mg/L | Potable &
Domestic Water,
Surface Water,
Ground Water,
bore and raw
water | Ion Chromatography | USEPA Method
300.1(1997)/ SCP
068a | | Determination of Chloride | Chloride | 0.5-600 mg/L CI | Waters for
potable and
domestic
purposes, WWTP
effluents, Other
waters - Ground
waters - Surface
waters - Landfill
Leachates | Spectrophotometry by
Aquakem 250
Autoanalyser | APHA, 4500CI-G,
23Ed., (2017) / SCP
027b | | Determination of Chlorite by IC | Chlorite | 0.03-0.8 mg/L | Potable &
Domestic Water,
Surface Water,
Ground Water,
bore and raw
water | Ion Chromatography | USEPA Method
300.1 (1997)/ SCP
068a | | Determination of Colour by
HACH Photometer using
the Rohasys System | Colour | 5 - 25 Pt Co Units | Potable, Ground
water, Surface
water, Waste
water, Effluents | Automated spectrophometer | Standard Methods for
the Examination of
Water and
Wastewater, Current | | | | | | | Edition – APHA-
2120C / SCP 018 B | |--|--|--|--|---|---| | Determination of Colour by Spectrophotometry | Colour | 5-500 Pt-Co | Waters for
potable and
domestic
purposes,
Sewage, Trade
Wastes, Bore
Waters, | Spectrophotometry | APHA, 2120C, 23
Ed., (2017) / SCP
018 | | Determination of Dustfall | Dust | N/A | Constituents of
the environment -
Atmospheric dust
fall | Bergerhoff Dust
Gauge | VDI 4320 Part 2,
Measurement of
Atmospheric Dust
Depositions / SCP
039 | | Determination of Fluoride | Fluoride | 0.1 - 10.0 mg/L | Potable waters,
surface waters,
ground waters
and waste waters | ISE | USEPA 9214 - Potentiometric Determination of Fluoride in Aqueous Samples with Ion- Selective Electrode / SCP 063 | | Determination of Free
Cyanide | Free Cyanide | 0.01 - 0.5 mg/l | Waters for potable and domestic purposes | Spectrophotometry by
Aquakem 250
Autoanalyser | CYN-D-P-A, SCP
027I | | Determination of
Magnesium in soil | Magnesium | 20 – 500 mg/L | Agricultural products and materials - Soils, Constituents of the environment - Soils | Spectrophotometric technique | Documented in- house procedures based on the Department of Agriculture – DAF Publication – Standard Soil Analysis for REPS – 1st November 2004 / SSP 022c | | Determination of Metals by ICP-OES in water | Aluminium
Cobalt
Molybdenum
Cadmium
Chromium
Copper | 10-10,000 ug/l
1-100 ug/l
1-1,000 ug/l
0.4-100 ug/l
1-10,000 ug/l
2-10,000 ug/l | Potable, Ground
water, Surface
water, Waste
water, Effluents | ICP-OES | APHA, 3120B 23 Ed.,
(2017) / SCP 053 D | | | Iron Lead Manganese Nickel Zinc Vanadium Calcium Magnesium Sodium Potassium | 2-10,000 ug/l
2-1,000 ug/l
1-10,000 ug/l
2-10,000 ug/l
2-10,000 ug/l
1-1,000 ug/l
0.2-500 mg/l
0.2-500 mg/l
0.2-500 mg/l
0.2-500 mg/l | | | | |---|---|--|--|---|---| | Determination of Metals by ICP-OES in Water | Arsenic
Selenium
Antimony | 3 - 1,000 ug/l
5 - 100 ug/l
5 - 100 ug/l | Ground water,
Surface water,
Waste water,
Effluents | ICP-OES | APHA, 3120B 23 Ed.,
(2017) / SCP 053 D | | Determination of Nitrate | Nitrate | 0.25-45 mg/L N
(1.11-199 mg/L
NO3) | Waters for
potable and
domestic
purposes, WWTP
effluents, Other
waters - Ground
waters - Surface
waters - Landfill
Leachates | Spectrophotometry by
Aquakem 250
Autoanalyser | APHA 4500NO3-E,
23Ed., (2017) / SCP
027g | | Determination of Nitrite | Nitrite | 0.005-10 mg/L N
(0.016-32.8 mg/L
NO2) | Waters for potable and domestic purposes, WWTP effluents, Other waters - Ground waters - Surface waters - Landfill Leachates | Spectrophotometry by
Aquakem 250
Autoanalyser | APHA, 4500NO2-B,
23Ed., (2017) / SCP
027f | | Determination of
Orthophosphate | Orthophosphate | 0.01-12 mg/l P
(0.03-36.8 mg/L
PO4) | Waters for
potable and
domestic
purposes, WWTP
effluents, Other
waters - Ground
waters - Surface
waters - Landfill
Leachates, Saline
waters | Spectrophotometry by
Aquakem 250
Autoanalyser | APHA, 4500P-E,
23Ed., (2017) / SCP
027c | | Determination of
Phosphorus (P) in
Morgan's extracts | Phosphorus | 1.0-30 mg/L | Agricultural products and materials - Soils, Constituents of the environment - Soils | Spectrophotometric
Technique | Department of Agriculture - DAF Publication - Standard Soil Analysis for REPS - 1st November 2005 / SSP 022b | |--|----------------|--|---|---|--| | Determination of Potassium in Morgan's Extract | Potassium | 20-500 mg/L | Agricultural products and materials - Soils, Constituents of the environment - Soils | Flame Photometric
Technique | Department of Agriculture - DAF Publication - Standard Soil Analysis for REPS - 1st November 2005 / SSP 022a | | Determination of Saline
Ammonia | Saline Ammonia | 0.035-0.4 mg/L N
(0.045-0.51 mg/L
NH4) | Waters for potable and domestic purposes, Saline Waters, WWTP effluents, Other waters - Ground waters - Surface waters - Landfill Leachates | Spectrophotometry by
Aquakem 250
Autoanalyser | APHA, 4500NH3-G,
23Ed., (2017) with
application note
D09161-01 / SCP
027j | | Determination of Saline
Total Oxidised Nitrogen | Saline TON | 0.02-5 mg/L N | Waters for potable and domestic purposes, Saline Waters, WWTP effluents, Other waters - Ground waters - Surface waters - Landfill Leachates | Spectrophotometry by
Aquakem 250
Autoanalyser | APHA, 4500NO3-G,
23Ed., (2017) with
application note
D09727-3 Thermo
Scientific (2014) /
SCP 027k | | Determination of Sulphate | Sulphate | 0.5-600 mg/L SO4 | Waters for potable and domestic purposes, WWTP effluents, Other waters - Ground waters - Surface | Spectrophotometry by
Aquakem 250
Autoanalyser | APHA, 4500SO4-F,
23Ed., (2017) / SCP
027d | | | | | waters - Landfill
Leachates | | | |---|-------------------------|---------------------|--|---|---| | Determination of Total
Hardness | Total Hardness | 5-600 mg/L CaCO3 | Waters for
potable and
domestic
purposes, WWTP
Effluents, Saline
waters, Other
waters - Ground
waters, Surface
waters, Landfill
Leachates | Spectrophotometry by
Aquakem 250
Autoanalyser | USEPA Method
138.1. / SCP 027i | | Determination of Total
Kjeldahl Nitrogen by
calculation | Total Kjeldahl Nitrogen | 0.5 - 10,000 mg/L N | Waters for potable and domestic purposes, Saline Waters, WWTP Effluent, Other Waters - Ground waters - Surface waters - Waste Waters - Effluents - Landfill Leachate | Calculation | APHA, 4500N-C &
4500NO3-H 23 Ed.,
(2017) / SCP 057 | | Determination of Total
Nitrogen | Total Nitrogen | 0.5 – 10,000 mg/L | Potable waters,
Ground waters,
Surface waters,
Saline Waters,
Leachates and
Effluents | Elemental Analyzer,
Combustion | BS EN 12260 / SCP
065(a) | | Determination of Total
Nitrogen by
Digestion/Spectrohotometry | Nitrogen | 1-10,000 mg/L N | Sewage, Trade
Wastes, Saline
Waters, Other
Waters | HACH DR3900 /
Spectrophotometry | APHA, 4500N, 23Ed.,
(2017) / SCP 043 | | Determination of Total
Oxidesed Nitrogen | TON | 0.2-50 mg/L N | Waters for
potable and
domestic
purposes, Saline
Waters, WWTP
effluents, Other
waters - Ground
waters - Surface | Spectrophotometry by
Aquakem 250
Autoanalyser | APHA, 4500NO3-E,
23Ed., (2017) with
application note
71395 Thermo
Scientific (2014) /
SCP 027e | | | | | waters - Landfill
Leachates | | | |---|---|--|---|------------------------------------|--| | Determination of Total
Phosphorus by
Digestion/Spectrohotometry | Phosphorus | 0.04-100 mg/L P | Sewage, Trade
Wastes, Saline
Waters, Other
Waters | HACH DR3900 /
Spectrophotometry | APHA, 4500-P,
23Ed., (2017) / SCP
044 | | Determination of Turbidity
by HACH Turbidity Meter
using the Rohasys System | Turbidity | 0.2 - 20 NTU | Potable, Ground
water, Surface
water, Waste
water, Effluents | HACH Turbidity meter | Standard Methods for
the Examination of
Water and
Wastewater, Current
Edition – APHA-
2130C SCP 058 B | | Dumas Combustion | TC
TN | 0.1 - 45%
0.05 - 10% | mineral, loam,
clay, peat | Dumas combustion | ISO 15936-2012/SSP
046a
ISO 15936-2012/SSP
046a | | Dumas Combustion | TC
TIC | 0.1 - 45 %
0.04 - 12 % | mineral, loam,
clay, peat | Dumas Combustion | ISO 15936-2012/SSP
047a
ISO 15936-2012/SSP
047a | | | TOC
TOC difference | 0.1 - 40 %
0.1 - 40 % | mineral, loam,
clay, peat | calculation
calculation | ISO 15936-2012/SSP
047a
ISO 15936-2012/
SSP 048 | | Ion Chromatography | Bromate | 2 to 50 μg/l BrO3 | Potable, Ground
Water, Surface
water | IC | USEPA Method
300.0 (1997)/ SCP
068b | | | Fluoride | 0.1 - 3 mg/L | Potable, Ground
Water, Surface
water | IC | USEPA Method
326.0 (1997)/ SCP
068a | | Metal analysis by iCapQ
ICP-MS | Aluminium
Arsenic
Cadmium
Chromium | 10-10,000 µg/L
1-10,000 µg/L
0.45-10,000 µg/L
1-10,000 µg/L | Waters for potable and domestic purposes | ICP-MS | APHA, 3125B, 23rd
Ed. (2017)/ SCP 073 | | ٠, | Value of the second | | | _ | | | 1 | |----|--|--|---|--|--|--|--| | | | | Cobalt Copper Iron Lead Manganese Boron Molybdenum Mercury Nickel Selenium Vanadium Zinc Uranium Antimony | 1-10,000 µg/L 1-10,000 µg/L 5-10,000 µg/L 1-10,000 µg/L 1-10,000 µg/L 20-10,000 µg/L 1-10,000 | | | | | | 767 Physical
test/measurement01
pH | Determination of pH and
Conductivity using Rohasys
minilab | рН | 4-10 pH Units | Waters for potable and domestic purposes, Trade Wastes, Saline Waters, Bore Waters, WWTP Effluent, Other waters - Ground waters - Surface waters - Waste Waters - Effluents - Landfill Leachates | Rohasys Minilab | APHA, 4500B-H+, 23
Ed., (2017) / SCP
052 | | | | Determination of water pH
and Buffer pH in Soils | pH Soil (Water) | 4-10 pH Units | Agricultural products and materials - Soils, Constituents of the environment - Soils | , | Department of Agriculture - DAF Publication - Standard Soil Analysis for REPS - 1st November 2004 / SSP 021 | | | | | SMP Buffer pH - for
determination of Lime
Requirement by
calculation | 4-10 pH Units | Agricultural products and materials - Soils, Constituents of the environment - Soils | , and the second | Department of Agriculture - DAF Publication - Standard Soil Analysis for REPS - 1st November 2005 & Calculation by | | | | | | | Chemical Analysis of
Agricultural Material,
An Foras Taluntais,
1979 / SSP 021 | |--|--|------------------|--|-----------------|---| | 767 Physical test/measurement02 Conductivity | Determination of pH and
Conductivity using Rohasys
minilab | Conductivity | Waters for potable and domestic purposes, Trade Wastes, Saline Waters, Bore Waters, WWTP Effluent, Other waters - Ground waters - Surface waters - Waste Waters - Effluents - Landfill Leachates | Rohasys Minilab | APHA, 2510B, 23
Ed., (2017) / SCP
052 | | 767 Physical
test/measurement03
Suspended Solids | Determination of
Suspended Solids | Suspended Soilds | Waters for potable and domestic purposes, Sewage, Trade Wastes, Saline Waters, Bore Waters, Other waters - Ground waters - Surface waters - Effluents - Leachates | Gravimetrically | APHA, 2540D, 23Ed.,
(2017) / SCP 010 |